• Title/Summary/Keyword: Collisions

Search Result 971, Processing Time 0.025 seconds

A Priority-based MAC Protocol to Support QoS in Ad-hoc Networks (애드 혹 네트워크 QoS 지원을 위한 우선순위 기반 MAC 프로토콜)

  • Wang, Weidong;Seo, Chang-Keun;Yoo, Sang-Jo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.2A
    • /
    • pp.80-89
    • /
    • 2005
  • In IEEE 802.11 and 802.11e for ad hoc networks, DCF and EDCA use a contention-based protocol called CSMA/CA, which is simple to implement efficient when the system is light loaded. But the performance of CSMA/CA decreases dramatically when the system load is heavy because of increasing collisions. In PCF and HCF modes, stations are controlled by a base station by polling, no collision ever occurs. However, when the system load is light, the performance is poor because few stations have data to transfer. More important, PCF and HCF can not be used in the ad hoc networks. In this paper, we address a priority-based distributed polling mechanism (PDPM) that implements polling scheme into DCF or EDCA modes for ad hoc networks by adding a polling approach before every contention-based procedure. PDPM takes the advantages of polling mechanism that avoids most of collisions in a high load condition. At the same time, it also keeps the contention-based mechanism for a light loaded condition. PDPM provides quality of service (QoS) with fewer collisions and higher throughput compared with IEEE 802.11e.

Group Node Contention Algorithm for Avoiding Continuous Collisions in LR-WPAN (무선 저속 PAN에서 연속된 충돌 회피를 위한 그룹 노드 경쟁 알고리즘)

  • Lee, Ju-Hyun;Yoo, Sang-Jo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.12B
    • /
    • pp.1066-1074
    • /
    • 2008
  • In this paper, we proposed an efficient algorithm using pulse signal based on group-node-contention in LR-WPAN. The purpose of IEEE 802.15.4 is low speed, low cost and low power consumption. Recently, as applications of LR-WPAN have been extended, there is a strong probability of collision as well and almost collision occurs because of hidden node problem. Moreover, if the collision continuously occurs due to hidden node collision, network performance could be decreased. Nowadays, although several papers focus on the hidden node collision, algorithms waste the channel resource if continuous collisions frequently occur. In this paper, we assume that PAN has been already formed groups, and by using pulse signal, coordinator allocates channel and orders, and then, nodes in the allocated group can compete each other. Hence, contention nodes are reduced significantly, channel wastage caused by collision is decreased, and data transmission rate is improving. Finally, this algorithm can protect the network from disruption caused by frequent collisions. Simulation shows that this algorithm can improve the performance.

A Study on Ship Collision Avoidance Algorithm by COLREG (국제해상충돌예방규칙에 따른 충돌회피 알고리즘에 관한 연구)

  • Kim, Dong-Gyun;Jeong, Jung-Sik;Park, Gyei-Kark
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.3
    • /
    • pp.290-295
    • /
    • 2011
  • On the basis of DCPA(Distance to Closest Point of Approach) and TCPA(Time to CPA), the conventional algorithms for collision avoidances have a drawback that the '72 CORLEGs(International Regulations for Preventing Collisions at Sea, 1972) has not taken into account to prevent collisions between ships. In this paper, the proposed algorithm decides whether the own ship is a give-way vessel or a stand-on vessel by observing the relative bearing of the encountered ship. To determine the ship position and time for collision avoidance, the proposed algorithm utilizes the ellipse model for ship safety domain. The computer simulation is done to represent the process of adversive behavior. Using the proposed method, the past maritime accident is analyzed. The proposed method can be effectively applied to collision avoidance by CORLEGs even when the target ship's navigational lights is invisible in poor weather and/or in the restricted visibility.

An Anti Collision Algorithm Using Efficient Separation in RFID system (RFID 시스템에서 효율적인 분리를 이용한 충돌 방지 알고리즘)

  • Kim, Sung-Soo;Yun, Tae-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.11
    • /
    • pp.87-97
    • /
    • 2013
  • In the RFID system, multiple tags respond in the process of identifying multiple tags in the reader's interrogation zone, resulting in collisions. Tag collision occurs when two or more tags respond to one reader, so that the reader cannot identify any tags. These collisions make it hard for the reader to identify all tags within the interrogation zone and delays the identifying time. In some cases, the reader cannot identify any tags. The reader needs the anti-collision algorithm which can quickly identify all the tags in the interrogation zone. The proposed algorithm efficiently divides tag groups through an efficient separation to respond, preventing collisions. Moreover, the proposed algorithm identifies tags without checking all the bits in the tags. The prediction with efficient separation reduces the number of the requests from the reader.

Seismic responses of a free-standing two-story steel moment frame equipped with a cast iron-mortar sliding base

  • Chung, Yu-Lin;Kuo, Kuan-Ting;Nagae, Takuya;Kajiwara, Koichi
    • Earthquakes and Structures
    • /
    • v.17 no.3
    • /
    • pp.245-256
    • /
    • 2019
  • An experimental study was conducted to evaluate the dynamic behavior of a free-standing frame equipped with a movable base system using cast iron and mortar as the bearing materials. The preliminary friction test indicated that a graphite layer developed on the interface and exhibited stable friction behavior. The friction coefficient ranged from 0.33 to 0.36 when the applied normal compression stress ranged from 2.6 to 5.2 MPa. The effect of the variation of normal compression stress would be small. Shaking table tests on the free-standing frame showed that rock, slide, and rock-slide responses occurred. The cumulative slide distance reached 381 mm under JMA Kobe wave excitation; however, only a few cyclic slides occurred at the same locations along the moving track. Most surfaces sustained single slides. Similar results can be observed in other shaking conditions. The insufficient cyclic sliding and significant rocking resulted in a few graphite layers on the mortar surfaces. Friction coefficients were generally similar to those obtained in the preliminary friction tests; however, the values fluctuated when the rocking became significant. The collisions due to rocking caused strong horizontal acceleration responses and resulted in high friction coefficient. In addition, the strong horizontal acceleration responses caused by the collisions made the freestanding specimen unable to reduce the input horizontal acceleration notably, even when slippage occurred. Compared with the counterpart fixed-base specimen, the specimen equipped with the iron-mortar base could reduce the horizontal acceleration amplification response and the structural deformation, whereas the vertical acceleration response was doubled due to collisions from rocking.

Towards the Saturation Throughput Disparity of Flows in Directional CSMA/CA Networks: An Analytical Model

  • Fan, Jianrui;Zhao, Xinru;Wang, Wencan;Cai, Shengsuo;Zhang, Lijuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.4
    • /
    • pp.1293-1316
    • /
    • 2021
  • Using directional antennas in wireless Ad hoc networks has many superiorities, including reducing interference, extending transmission range, and increasing space division multiplexing. However, directional transmission introduces two problems: deafness and directional hidden terminals problems. We observe that these problems result in saturation throughput disparity among the competing flows in directional CSMA/CA based Ad hoc networks and bring challenges for modeling the saturation throughput of the flows. In this article, we concentrate on how to model and analyze the saturation throughput disparity of different flows in directional CSMA/CA based Ad hoc networks. We first divide the collisions occurring in the transmission process into directional instantaneous collisions and directional persistent collisions. Then we propose a four-dimensional Markov chain to analyze the transmission state for a specific node. Our model has three different kinds of processes, namely back-off process, transmission process and freezing process. Each process contains a certain amount of continuous time slots which is defined as the basic time unit of the directional CSMA/CA protocols and the time length of each slot is fixed. We characterize the collision probabilities of the node by the one-step transition probability matrix in our Markov chain model. Accordingly, we can finally deduce the saturation throughput for each directional data stream and evaluate saturation throughput disparity for a given network topology. Finally, we verify the accuracy of our model by comparing the deviation of analytical results and simulation results.

Improvement of Navigation Lights of Middle and Small Size Ships for Marine Traffic Safety in Coastal Areas of Korea (연안 해상교통안전을 위한 중소형선 항해등 개선방안)

  • Song-Jin Na
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.7
    • /
    • pp.1129-1139
    • /
    • 2022
  • Collision accidents happen frequently. The majority of ships involved in collisions in the coastal areas of Korea are middle and small size ships. The proportion of collision accidents is only 9% of all types of marine accidents; however, the number of casualties resulting from collisions is 34.4% of all human life damages. Generally, as reported by the people involved in these collisions, the navigation lights of the opponent ships were poor and invisible when the accident happened even though the weather and visibility were good. Furthermore, there are many insistences for poor navigation light conditions of the opponent ship in the bay or harbor. Therefore, it is necessary to analyze the present conditions and safety of navigation lights. Therefore, in this study, we examined the rules and books of navigation lights and compared it to that of other transportation systems, such as aircraft, trains, and road vehicles. Furthermore, we analyzed the current marine traf ic circumstances and ship collision accidents that happened in the past 5 years. Additionally, a questionnaire was prepared to gather the opinion of ship experts and secure the objectivity for improvement methods of navigation lights. Finally, methods to improve the navigation lights on ships were devised.

Adaptive Collision Resolution Algorithm for Improving Delay of Services in B-WLL System (B-WLL 시스템에서 서비스 지연 향상을 위한 충돌 해소 알고리즘)

  • Ahn, Kye-Hyun;Park, Byoung-Joo;Baek, Seung-Kwon;Kim, Eung-Bae;Kim, Young-Chon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.1B
    • /
    • pp.42-48
    • /
    • 2002
  • In broadband wireless networks, the effective meeting of the QoS guarantees may strongly depend on the Contention Resolution Algorithm used in the uplink contention period. The time it takes a station to transmit a successful request to the base station, or request delay, must be kept low even during periods of high contention. If a request suffers many collisions, it cannot rely on the preemptive scheduler to receive low access delays. However, the conventional collision resolution algorithm has a problem that all collided stations are treated equally regardless of their delay from previous contention periods. Some requests may have very long request delay caused by continuous collisions. In this paper, we propose an adaptive collision resolution algorithm for fast random access in broadband wireless networks. The design goal is to provide quick access to the request with a high number of collisions. To do this, the proposed algorithm separates the whole contention region into multiple sub regions and permits access through each sub region only to the requests with equal number of collisions. The sub region is adaptively created according to the feedback information of previous random access. By simulation, the proposed algorithm can improve the performance in terms of throughput, random delay and complementary distribution of random delay by its ability to isolate higher priorities from lower ones. We can notice the algorithm provides efficiency and random access delay in random access environment.

A Study for Drone to Keep a Formation and Prevent Collisions in Case of Formation Flying (드론의 삼각 편대비행에서 포메이션 유지 및 충돌 방지 제어를 위한 연구)

  • Cho, Eun-sol;Lee, Kang-whan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.499-501
    • /
    • 2016
  • In this paper, we suggest an advance method for maintaining a perceived behavior as triangle formation and preventing collision between each other in case of a flying drone. In the existing studies, the collision of the drone is only controlled by using light entered in the camera or the image processing. However, when there is no light, it is difficult to confirm the position of each other and they can collide because this system can not confirm the each other's position. Therefore, in this paper, we propose the system to solve the problems by using the distance and the relative coordinates of the three drones that were determined using the ALPS(Ad hoc network Localized Positioning System) algorithm. This system can be a new algorithm that will prevent collisions between each other during flying the drone object. The proposed algorithm is that we make drones maintaining a determined constant value of the distance between coordinates of each drone and the measured center of the drone of triangle formation. Therefore, if the form of fixed formation is disturbed, they reset the position of the drone so as to keep the distance between each drone and the center coordinates constant. As a result of the simulation, if we use the system where the supposed algorithm is applied, we can expect that it is possible to prevent malfunction or an accident due to collisions by preventing collisions of drones in advanced behavior system.

  • PDF

Study on the Human Error Prevention Collision Avoidance Model using Merchant Ship Collision Accident Analysis (상선 충돌사고 분석을 이용한 인적과실 예방 충돌회피모델 연구)

  • Kim, Do-Hoon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.918-927
    • /
    • 2022
  • The purpose of this study was to investigate the causes of collisions by examining 668 cases of merchant ship collision accidents that occurred during the past 12 years (2010-2021) and analyzed them statistically. Further, the analysis results were applied to propose a human error prevention collision avoidance (HEPCA) model. The statistical annual report of the Korea Maritime Safety Tribunal (KMST) and the collision investigation report were investigated to collect data on the causes of collisions of merchant ships, and frequency analysis was performed using the statistical analysis tool, SPSS Statistics. In the first-stage analysis, the causes of collisions were analyzed targeting 668 merchant ship collision accidents, and in the second-stage analysis, the identified maximum frequency cause factors were analyzed in detail. The analysis results identified that 98 % of the cause of the collision was the human error of the navigator, and the highest frequency was in the order of neglect of look-out > violation of navigation regulations > improper maneuvering. The cause of the neglect of look-out was mainly neglecting continuous monitoring after the first recognition of the target ship. The HEPCA model for human error prevention was proposed by applying the analysis results to the collision case of the investigation report. The results of this study are expected to be used as educational materials at marine navigator educational institutions and in practice for avoiding collisions caused by human errors of navigators.