• Title/Summary/Keyword: Collision-damage analysis

Search Result 114, Processing Time 0.03 seconds

A Study on the Bed Load Collision Sound Analysis Using Sound Sensor and Denoising Filter (음향센서와 디노이징 필터를 활용한 향상된 소류사 충돌음 분석 연구)

  • Kim, Sung Uk;Jun, Kye Won
    • Journal of Korean Society of Disaster and Security
    • /
    • v.14 no.2
    • /
    • pp.43-50
    • /
    • 2021
  • In Korea, the frequency of soil disasters has soared recently due to increased torrential rains caused by abnormal weather conditions. In particular, soil generated from mountainous areas is flowing into small rivers along valleys, depositing rivers and adding to flood damage. In order to prevent damage from such soil disasters, it is important to predict sediments and to quantitatively identify bed load. In this work, we conducted an experiment to indirectly measure acoustic sensor-based bed load collision sounds using pipe hydrophones, and compared them with raw data by applying denoising methods to improve the reliability of the measured data. As a result, we derive results in a more clear analysis of bed load estimation by correcting noise when the denoising method is applied to raw data.

Accident prevention and damage reduction technology development through intelligence of Highway-railroad grade crossing (철도건널목 사고방지를 위한 지능화 방안 연구)

  • Cho, B.K.;Ryu, S.H.;Hwang, H.C.;Cho, H.S.;Lee, H.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2008.04c
    • /
    • pp.175-177
    • /
    • 2008
  • The level crossing collision accident which comprises more than 90 percent of all level crossing accidents is one of the most serious safety problems. There is a critical need for providing safe strategy and is focusing on the level crossing information rather than measures at a grade crossing. This study is intended to develop technology for accident prevention and damage reduction based on accident cases analysis result and improvement direction to complement shortcomings of safety equipment of conventional level crossing and to establish safety of travelers(train, motor vehicle, person).

  • PDF

Study on Computational Simulation of a Metro Collision Accident and Improvement of Passive Safety (도시철도 충돌사고 시뮬레이션 및 충돌안전도 개선방안 연구)

  • Jung, Hyun Seung;Son, Seung Wan;Kwon, Tae Soo;Kim, Jin Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.9
    • /
    • pp.885-892
    • /
    • 2015
  • In this study, we simulate the railway crash accident that occurred at the Sangwangsimni station on the Seoul Metro Line #2, and we propose a solution to minimize the damage. We use LS-DYNA, which is the commercial software employed for collision analysis to perform 1-D and 3-D simulations for the recurrence of accidents. By performing 1-D simulations, we analyze the load, displacement, absorbed energy of the couplers, and acceleration of vehicles, and we evaluate the safety in accidental collisions. By performing 3-D simulations, we analyze the deformation of the car and over-ridding. We propose methods to improve the safety in collisions involving railway vehicles, and we perform collision accident simulations to determine improvements when applying a high-performance energy absorber to the front car.

A finite element-experimental study of the impact of spheres on aluminium thin plates

  • Micheli, Giancarlo B.;Driemeier, Larissa;Alves, Marcilio
    • Structural Engineering and Mechanics
    • /
    • v.55 no.2
    • /
    • pp.263-280
    • /
    • 2015
  • This paper describes a study of the collision of hard steel spheres against aluminium thin circular plates at speeds up to 140 m/s. The tests were monitored by a high speed camera and a chronoscope, which allowed the determination of the ballistic limit and the plate deformation pattern. Quasi-static material parameters were obtained from tests on a universal testing machine and dynamic mechanical characterization of two aluminium alloys were conducted in a split Hopkinson pressure bar. Using a damage model, the perforation of the plates was simulated by finite element analysis. Axisymmetric, shell and solid elements were employed with various parameters of the numerical analysis being thoroughly discussed, in special, the dynamic model parameters. A good agreement between experiments and the numerical analysis was obtained.

A Study on Synthetic Dataset Generation Method for Maritime Traffic Situation Awareness (해상교통 상황인지 향상을 위한 합성 데이터셋 구축방안 연구)

  • Youngchae Lee;Sekil Park
    • Journal of Information Technology Applications and Management
    • /
    • v.30 no.6
    • /
    • pp.69-80
    • /
    • 2023
  • Ship collision accidents not only cause loss of life and property damage, but also cause marine pollution and can become national disasters, so prevention is very important. Most of these ship collision accidents are caused by human factors due to the navigation officer's lack of vigilance and carelessness, and in many cases, they can be prevented through the support of a system that helps with situation awareness. Recently, artificial intelligence has been used to develop systems that help navigators recognize the situation, but the sea is very wide and deep, so it is difficult to secure maritime traffic datasets, which also makes it difficult to develop artificial intelligence models. In this paper, to solve these difficulties, we propose a method to build a dataset with characteristics similar to actual maritime traffic datasets. The proposed method uses segmentation and inpainting technologies to build a foreground and background dataset, and then applies compositing technology to create a synthetic dataset. Through prototype implementation and result analysis of the proposed method, it was confirmed that the proposed method is effective in overcoming the difficulties of dataset construction and complementing various scenes similar to reality.

Concrete Median Barrier Performance Improvement using Stiffness and Flexibility Reinforcement (강성 및 연성 보강을 통한 콘크리트 중앙분리대 성능 향상 분석)

  • Kim, Chan-Hee;Kim, Woo Seok;Lee, Ilkeun;Lee, Jaeha
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.23-31
    • /
    • 2018
  • Recently, there was an collision accident of vehicle-concrete median barrier and unfortunately, passengers were killed by exceeded capacity of concrete median. Therefore, improving the capacity of concrete median barrier is need to reduce damage. Accordingly, in this study, appropriate collision model verified by using the FE analysis program LS-Dyna and recommend a concrete median barrier section. The improvement parameters such as wire mesh diameter, steel plate, rubber pad were selected for improved capacity of the median barrier. Finally, section of concrete median barrier improved wire mesh diameter decreased volume loss, section of concrete median barrier improved rubber pad accepted impact loading and increased elastic area.

Identification of Dynamic Characteristics and Numerical Analysis of Ceiling System Considering Collision Adjacent Structures (천장시스템의 동특성 식별 및 인접 구조물과의 충돌을 고려한 동적응답해석)

  • Jeon, Min-Jun;Ju, Bo-Geun;Cho, Bong-Ho;Lee, Sang-Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.4
    • /
    • pp.205-213
    • /
    • 2019
  • In the Pohang Earthquake in 2017, considerable damage to non-structural elements, such as ceiling systems, exterior finishes, and curtain walls, was reported; thus, the seismic designs of non-structural elements are important. In this study, the modal characteristics of a ceiling system were investigated through the impact hammer test. The frequency and damping ratio according to the length of the hanger bolt were identified. In addition, collision experiments were conducted to obtain the impact duration for exactly considering the impact effects of the ceiling against a wall or other adjacent elements. Based on the identified dynamics and impact duration of the ceiling system, the seismic responses of the ceiling system were obtained numerically in case of collision. Numerical simulation results show that the impact load tends to increase with the clearance between the ceiling and adjacent elements, and is not correlated with the length of the hanger bolt.

Analysis for Traffic Accident of the Bus with Advanced Driver Assistance System (ADAS) (첨단안전장치 장착 버스의 사고사례 분석)

  • Park, Jongjin;Choi, Youngsoo;Park, Jeongman
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.3
    • /
    • pp.78-85
    • /
    • 2021
  • Recently a traffic accident of heavy duty vehicles under the mandatory installation of ADAS (Advanced Driver Assistance System) is often reported in the media. Heavy duty vehicle accidents are normally occurring a high number of passenger's injury. According to report of Insurance Institute for Highway Safety, FCW (Forward Collision Warning) and AEB (Automatic Emergency Braking) were associated with a statistically significant 12% reduction in the rate of police-reportable crashes per vehicle miles traveled, and a significant 41% reduction in the rear-end crash rate of large trucks. Also many countries around the world, including Korea, are studying the effects of ADAS installation on accident reduction. Traffic accident statistics of passenger vehicle for business purpose in TMACS (Traffic safety information Management Complex System in Korea) tends to remarkably reduce the number of deaths due to the accident (2017(211), 2018(170), 2019(139)), but the number of traffic accidents (2017(8,939), 2018(9,181), 2019(10,095)) increases. In this paper, it is introduced a traffic accident case that could lead to high injury traffic accidents by being equipped with AEB in a bus. AEB reduces accidents and damage in general but malfunction of AEB could occur severe accident. Therefore, proper education is required to use AEB system, simply instead of focusing on developing and installing AEB to prevent traffic accidents. Traffic accident of AEB equipped vehicle may arise a new dispute between a driver's fault and vehicle defect. It is highly recommended to regulate an advanced event data recorder system.

Propulsive Performance Analysis of Ducted Marine Propulsors with Rotor-Stator Interaction

  • Jang, Jin-Ho;Yu, Hye-Ran;Jung, Young-Rae;Park, Warn-Gyu
    • Journal of Ship and Ocean Technology
    • /
    • v.8 no.1
    • /
    • pp.31-41
    • /
    • 2004
  • A ducted marine propulsor has been widely used for the thruster of underwater vehicles for protecting collision damage, increasing propulsive efficiency, and reducing cavitation. Since a single-stage ducted propulsor contains a set of rotor and stator inside an annular duct, the numerical analysis becomes extremely complex and computationally expensive. However, the accurate prediction of viscous flow past a ducted marine propulsor is essential for determining hydrodynamic forces and the propulsive performances. To analyze a ducted propulsor having rotor-stator Interaction, the present work has solved 3D incompressible RANS equations on the sliding multiblocked grid. The flow of a single stage turbine flow was simulated for code validation and time averaged pressure coefficients were compared with experiments. Good agreement was obtained. The hydrodynamic performance coefficients were also computed.

Analysis of soft deformation limitation of base-isolated structures

  • Jinwei Jiang;Baoyang Yang
    • Earthquakes and Structures
    • /
    • v.26 no.1
    • /
    • pp.1-15
    • /
    • 2024
  • Isolation technology has been proven effective in reducing the seismic response of superstructures, where most of the deformation is concentrated in the isolation layer. However, in cases of earthquakes with intensities surpassing the fortification level of the area, or severe near-fault earthquakes, the isolation layer may experience excessive deformation, resulting in damage to the isolation bearings or collisions with the retaining wall or surrounding buildings. In this study, a finite element model using ABAQUS is established and compared with experimental test results to deeply investigate the influence of limit devices on the isolation layer and its response to the superstructure. The findings reveal that a larger limiter stiffness and a smaller reserved gap can achieve a more effective limiting effect. Nevertheless, a smaller reserved gap and a larger limiter stiffness may result in increased response of the superstructure. Therefore, rational selection of the reserved gap and limiter stiffness is crucial to reduce the acceleration response.