• Title/Summary/Keyword: Collision-Free

Search Result 293, Processing Time 0.034 seconds

A Study on Development of Robot Simulator for Collision Avoidance (충돌 회피를 위한 로봇 시뮬레이터의 개발에 관한 연구)

  • 이주형
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.32 no.3
    • /
    • pp.321-328
    • /
    • 1996
  • This paper presents a robot simulator which can automatically generate a smooth collision free path. This simulator has the characterstisc of the object - oriented programming which is coded in Borland C+ +. Using General Inverse Algorithm, the inverse kinematics solutions of any kind of robots can be found generally. This simulator also uses Bezier Functions for the description of a smooth collision - free path. In addition, GUI(Graphic User Interface)technique is employed for user's convenience.

  • PDF

Collision-free path planning for two cooperating robot manipulators using reduced dimensional configuration space (축소 차원 형상 공간을 이용한 협조작업 두 팔 로봇의 충돌 회피 경로 계획)

  • 최승문;이석원;이범희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.904-907
    • /
    • 1996
  • In this paper, we propose an efficient collision-free path planning method of two cooperating robot manipulators grasping a common object rigidly. For given two robots and an object, the procedure is described which constructs the reduced dimensional configuration space by the kinematic analysis of two cooperating robot manipulators. A path planning algorithm without explicit representation of configuration obstacles is also described. The primary steps of the algorithm is as follows. First, we compute a graph which represents the skeleton of the free configuration space. Second, a connection between an initial and a goal configuration to the graph is searched to find a collision-free path.

  • PDF

A Method for Local Collision-free Motion Coordination of Multiple Mobile Robots

  • Ko, Nak-Yong;Seo, Dong-Jin;Kim, Koung-Suk
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1609-1614
    • /
    • 2003
  • This paper presents a new method driving multiple robots to their goal position without collision. To consider the movement of the robots in a work area, we adopt the concept of avoidability measure. To implement the concept in collision avoidance of multiple robots, relative distance between the robots is proposed. The relative distance is a virtual distance between robots indicating the threat of collision between the robots. Based on the relative distance, the method calculates repulsive force against a robot from the other robots. Also, attractive force toward the goal position is calculated in terms of the relative distance. The proposed method is simulated for several cases. The results show that the proposed method steers robots to open space anticipating the approach of other robots. The proposed method works as a local collision-free motion coordination method in conjunction with higher level of task planning and path planning method for multiple robots to do a collaborative job.

  • PDF

Time-Varying Joint Constraint Map Using View Time Concept and Its Use on the Collision Avoidance of Two Robots (View Time 개념을 이용한 지변 조인트 제한 지도(JCM) 상에서의 두 로보트의 충돌 회피에 관한 연구)

  • 남윤석;이범희;고명삼;고낙용
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.11
    • /
    • pp.1770-1781
    • /
    • 1989
  • Two robots working in a common workspace may collide with each other. In this paper, a collision-free motion planning algorithm using view time concept is proposed to detect and avoid collision before robot motion. Collision may occur not only at the robot end effector but also at robot links. To detect and avoid potential collisions, the trajectory of the first robot is sampled periodically at every view time and the region in Cartesian space swept by the first robot is viewed as an obstacle during a single sampling period. The forbidden region in the joint constraint map (JCM). The JCM's are obtained in this way at every view time. An algorithm is established for collision-free motion planning of the two robot system from the sequence of JCM's and it is verified by simulations.

  • PDF

Collision Avoidance Algorithm for Satellite Formation Reconfiguration under the Linearized Central Gravitational Fields

  • Hwang, InYoung;Park, Sang-Young;Park, Chandeok
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.1
    • /
    • pp.11-15
    • /
    • 2013
  • A collision-free formation reconfiguration trajectory subject to the linearized Hill's dynamics of relative motion is analytically developed by extending an algorithm for gravity-free space. Based on the initial solution without collision avoidance constraints, the final solution to minimize the designated performance index and avoid collision is found, based on a gradient method. Simple simulations confirm that satellites reconfigure their positions along the safe trajectories, while trying to spend minimum energies. The algorithm is applicable to wide range of formation flying under the Hill's dynamics.

A Real-Time Collision-Free Trajectory Planning and Control for a Car-Like Mobile Robot (모바일 로봇의 충돌회피 알고리즘 개발)

  • Nguyen, Huu-Cong;Kim, Gi-Bok;Jo, Sang-young
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.2
    • /
    • pp.99-109
    • /
    • 2015
  • This study proposes a new approach to analyze the impedance and the elasticity of a serial chain of spring-damper system, areal-time collision-free trajectory generation algorithm is proposed. The reference points on a trajectory connected by the spring-damper system have a mechanism for self-position adjustment to solve a collision problem by the impedance, and the local adjustment of each reference point is propagated through the elasticity to a real robot at the end of the spring-damper system. As a result, the overall trajectory consisting of the reference points becomes free of collision with environmental obstacles and efficient having the shortest distance as possible. In this process,, the reference points connected by the spring-damper system take role of virtual robot as global guidance for a real robot, and a cooperative is carried out by the system of robots. A control technology is proposed to implement for mobile robot.

Development of a Motion Control Algorithm for the Automatic Operation System of Overhead Cranes (천장크레인의 무인운전 시스템을 위한 운동제어 알고리즘 개발)

  • Lee, Jong-Kyu;Park, Young-Jo;Lee, Sang-Ryong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.10
    • /
    • pp.3160-3172
    • /
    • 1996
  • A search algorithm for the collision free, time optimal transport path of overhead cranes has been proposed in this paper. The map for the working environment of overhead cranes was constructed in the form of three dimensional grid. The obstacle occupied region and unoccupied region of the map has been represented using the octree model. The best-first search method with a suitable estimation function was applied to select the knot points on the collision free transport path to the octree model. The optimization technique, minimizing the travel time required for transporting objects to the goal while subjected to the dynamic constraints of the crane system, was developed to find the smooth time optimal path in the form of cubic spline functions which interpolate the selected knot points. Several simulation results showed that the selected estimation function worked effectively insearching the knot points on the collision free transport path and that the resulting transport path was time optimal path while satisfying the dynamic constraints of the crane system.

Collision Free Path Planing of Articulated Manipulator for Remote Maintenance Using Sequential Search Method (원격 유지보수용 다관절 조작기의 순차 탐색에 의한 장애물 회피 경로계획)

  • 이종열;송태길;김성현;박병석;윤지섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.519-522
    • /
    • 1997
  • In this study, the collision free path planning method of the articulated manipulator using sequential search is proposed. This method is to find the joint path of the manipulator with many degrees of freedom from the distal joint to the proximal one. To do this, the initial work space of the gantry manipulator, which is a remote maintenance equipment of the radioactive environment, is defined from the condition that the distal joint configuration is determined by the posture of maintenance. Then, 2-dimensional configuration space with the obstacle area is represented and the collision free path of manipulator is searched in the configuration space. And, this method is verified using the graphic simulation in virtual workcell for the spent fuel disassembling processes. The result of this study can be effectively used in implementing the maintenance processes for the hot cell equipment and enhance the reliability of the spent fuel management.

  • PDF

An Constraint Based Approach to Planning Collision-Free Navigation of Multi-AUVs with Environmental Disturbances (환경 외란을 고려한 다중 자율잠수정의 제한적 기법 기반 주행 계획기)

  • Ji, Sang-Hoon;Ko, Woo-Hyun;Jung, Yeun-Soo;Lee, Beom-Hee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.53-65
    • /
    • 2008
  • This paper proposes the qualitative method for planning the operation of multi-AUVs with environmental disturbances, which is considered to be a very difficult task. In this paper we use an extension collision map as a collision free motion planner. The tool was originally developed for the multiple ground vehicles with no internal/external disturbance. In order to apply the method to a water environment where there are tides and waves, and currents, we analyze the path deviation error of AUVs caused by external disturbances. And we calculate safety margin for the collision avoidance on the extension collision map. Finally, the simulation result proves that the suggested method in this paper make multi-AUVs navigate to the goal point effectively with no collision among them.

Mariner's Information Processing Characteristics in Ship-to-Ship Collision Situation (선박간 충돌 위험상황에서의 항해사 정보처리 특성에 관한 연구)

  • Kim, Bi-A;Oh, Jin-Seok;Lee, Se-Won;Lee, Jae-Sik
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.1
    • /
    • pp.46-50
    • /
    • 2008
  • The purpose of the present study was to investigate the mariner's information characteristics in ship-ta-ship collision situation using the full mission ship-handling simulator. Risk levels of ship-to-ship collision were manipulated by whether the target ship complies with the naval regulations and by movement patterns of target ship. Dependent variables reflecting mariner's information characteristics in ship-ta-ship collision situation were measured in terms of radar detection reaction time, free recall performance of past navigation situation, and subjective ratings for the task difficulty. The results showed that, in general, the mariners appeared to be deteriorated in their radar detection reaction time and free recall performance as the risk of ship-ta-ship collision increased. Also, the mariners tended to rate required tasks more difficult in the high risk ship-ta-ship collision situation.