• Title/Summary/Keyword: Collision condition

Search Result 266, Processing Time 0.023 seconds

A Study on Stochastic Wave Propagation Model to Generate Various Uninterrupted Traffic Flows (다양한 연속 교통류 구현을 위한 확률파장전파모형의 개발)

  • Chang, Hyun-Ho;Baek, Seung-Kirl;Park, Jae-Beom
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.4 s.75
    • /
    • pp.147-158
    • /
    • 2004
  • A class of SWP(Stochastic Wane Propagation) models microscopically mimics individual vehicles' stochastic behavior and traffic jam propagation with simplified car-following models based on CA(Cellular Automata) theory and macroscopically captures dynamic traffic flow relationships based on statistical physics. SWP model, a program-oriented model using both discrete time-space and integer data structure, can simulate a huge road network with high-speed computing time. However, the model has shortcomings to both the capturing of low speed within a jam microscopically and that of the density and back propagation speed of traffic congestion macroscopically because of the generation of spontaneous jam through unrealistic collision avoidance. In this paper, two additional rules are integrated into the NaSch model. The one is SMR(Stopping Maneuver Rule) to mimic vehicles' stopping process more realistically in the tail of traffic jams. the other is LAR(Low Acceleration Rule) for the explanation of low speed characteristics within traffic jams. Therefore, the CA car-following model with the two rules prevents the lockup condition within a heavily traffic density capturing both the stopping maneuver behavior in the tail of traffic jam and the low acceleration behavior within jam microscopically, and generates more various macroscopic traffic flow mechanism than NaSch model's with the explanation of propagation speed and density of traffic jam.

Flow Noise Analysis of Hull Appendages Using Lattice Boltzmann Method (격자 볼츠만 기법을 이용한 선체 부가물 유동소음해석)

  • Yeo, Sang-Jae;Hong, Suk-Yoon;Song, Jee-Hun;Kwon, Hyun-Wung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.6
    • /
    • pp.742-750
    • /
    • 2020
  • The flow noise generated by hull appendages is directly related to the performance of the sonar in terms of self-noise and induces a secondary noise source through interaction with the propeller and rudder. Thus, the noise in the near field should be analyzed accurately. However, the acoustic analogy method is an indirect method that is not used to simulate the propagation of an acoustic signal directly; therefore, diffraction, reflection, and scattering characteristics cannot be considered, and near-field analysis is limited. In this study, the propagation process of flow noise in water was directly simulated by using the lattice Boltzmann method. The lattice Boltzmann method could be used to analyze flow noise by simulating the collision and streaming processes of molecules, and it is suitable for noise analysis because of its compressibility, low dissipation rate, and low dispersion rate characteristics. The flow noise source was derived using Reynolds-averaged Navier-Stokes equations for the hull appendages, and the propagation process of the flow noise was directly simulated using the lattice Boltzmann method by applying the developed flow-acoustic boundary conditions. The derived results were compared with Ffowcs Williams-Hawkings results and hydrodynamic pressure results based on the receiver location to verify the usefulness of the lattice Boltzmann method within the near-field range in comparison with other techniques.

A DCF Throughput Analysis of the Ideal and Fading Channel in the Wireless LAN (무선 LAN에서 이상 및 페이딩 채널 환경의 DCF 처리율 비교 분석)

  • Lee, Yong-Sik;Lee, Ha-Cheol;Lee, Byung-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.7
    • /
    • pp.741-753
    • /
    • 2008
  • This paper explores the throughput performance of CSMA/CA-based DCF protocol over both ideal channels and fading channels with payload size at the MAC layer in the 802.11a wireless LAN. In the ideal channel, there are no errors and at the transmission cycle there is one and only one active station which always has a packet to send and other stations can only accept packets and provide acknowledgements. In the fading channel, bit errors appear in the channel randomly and the number of stations is assumed to be fixed. And each station always has packets for transmission. In other words, we operate in saturation conditions. Up to now conventional research work about DCF throughput analysis of IEEE 802.11 a wireless LAN has been done over the ideal channel, but this paper is done over the Rayleigh/Ricean fading channel. So, the ratio of received average energy per bit-to-noise power spectral density $E_b/N_o$ is set to 25 dB and the ratio of direct-to-diffuse signal power in each sub-channel $\xi$ is set to 6 for combined Rayleigh/Ricean fading channel. In conclusion, it is shown that the saturation throughput is always less than the maximum throughput at all the payload size and the higher the transmission rate be, the higher the decreasing rate of saturation throughput compared to the maximum throughput be.

Deformable Model using Hierarchical Resampling and Non-self-intersecting Motion (계층적 리샘플링 및 자기교차방지 운동성을 이용한 변형 모델)

  • 박주영
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.29 no.11
    • /
    • pp.589-600
    • /
    • 2002
  • Deformable models offer an attractive approach for extracting three-dimensional boundary structures from volumetric images. However, conventional deformable models have three major limitations - sensitive to initial condition, difficult to represent complex boundaries with severe object concavities and protrusions, and self-intersective between model elements. This paper proposes a deformable model that is effective to extract geometrically complex boundary surfaces by improving away the limitations of conventional deformable models. First, the proposed deformable model resamples its elements hierarchically based on volume image pyramid. The hierarchical resampling overcomes sensitivity to initialization by extracting the boundaries of objects in a multiscale scheme and enhances geometric flexibility to be well adapted to complex image features by refining and regularizing the size of model elements based on voxel size. Second, the physics-based formulation of our model integrates conventional internal and external forces, as well as a non-self-intersecting force. The non-self-intersecting force effectively prevents collision or crossing over between non-neighboring model elements by pushing each other apart if they are closer than a limited distance. We show that the proposed model successively extracts the complex boundaries including severe concavities and protrusions, neither depending on initial position nor causing self-intersection, through the experiments on several computer-generated volume images and brain MR volume images.

The Artisan of Bauhaus and Deisgn Democracy: Collision and Collaboration of Art and Technology (바우하우스의 장인과 디자인 민주주의: 예술과 기술의 충돌과 협력)

  • Ryu, Seoung-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.12
    • /
    • pp.61-72
    • /
    • 2015
  • The capitalistic resistance movement attempted in most modern art areas was carried out through a complete convergence of the art and skill, which was the new formation of the symbolic boundary. Although this resistance movement was aimed at restoring artisan art through the revival of tbe work of handicraftsmen, it consequently caused the stratification of the art and became a de-artisan art excluding the autonomous labor. Hereupon, this study would focus on Bauhaus which attempted to dismantle the symbolic boundary through the convergence of the technology and art which actively used the condition the great industry brought only as an effort for the restoration of artisan labor, and would examine the actor-network of Bauhaus. Therefore, this study would examine the Bauhaus' artistic trend, the 16C Renaissance art promotion movement, and the 19C art crafts movement in the network-oriented relation, and would analyze the Bauhaus' ideological source which expressed design democracy through the bridging role of and analyze the artisan art and the mechanism that had the new technology fused. Furthermore, the convergence possibility of the 'collaboration spirit' being embodied as a philosophy of the democracy in the design continues with the tremendous influence of the new technology.

The Enhancement Effect of the Electrochemical Deposition in the Recovering Process of Cu from CuSO4 Solution (황산구리 용액으로부터의 구리회수공정에서 초음파에 의한 전착반응의 증대효과)

  • Yoon, Yong-Soo;Hong, In-Kwon;Lee, Jae-Dong;Jeong, Il-Hyun
    • Applied Chemistry for Engineering
    • /
    • v.5 no.2
    • /
    • pp.199-208
    • /
    • 1994
  • In this study, the ultrasound which provides the properties of mixing, and surface cleaning effect, the increase of the effective reaction surface area and the enhancement of the effective collision frequency, was used to enhance the recovering efficiency of Cu from the Cu-ion containning waste water. The ultrasonic reactor used in this study was designed and constructed for improving the disadvantage of the existing ultrasonic reactor. From the experimental result and its analysis, we obtained following conclusions. 1. The ultrasound increased the rate of electrochemical deposition to 582.2% in maximum at the condition of $0.1M-CuSO_4$, and 2.1 V-overpotential. 2. The enhancement effect of ultrasound induced by the reduction of diffusion layer thickness was 277.8% in maximum and induced by the other effect except for the reduction effect of the diffusion layer thickness was 253.6% in maximum at $0.1M-CuSO_4$ and 2.1V overpotential. 3. This study gave the possibility of the scale-up of ultrasonic reactor and in particular, ultrasonic reactor would be effective in the treatment of waste water containning a low concentration of Cu ion.

  • PDF

A Study on the Effects of Marine Accidents by Navigation Officers' Fatigue (항해사의 피로가 해양사고에 미치는 영향 평가에 관한 연구)

  • Cho, Jun-Young;Keum, Jong-Soo;Jang, Woon-Jae
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.16 no.2
    • /
    • pp.201-207
    • /
    • 2010
  • Recently, about 600 cases of marine accidents occur annually in Korea. According to many studies and analyses on occurrence of marine accidents, 70~80% of marine accidents were caused by human factors. Among the human factors, navigation officers' fatigue is very important factor. Although navigation officers' fatigue serves as an important role in marine accidents, there is no method to exactly examine the degree of officers' fatigue. Accordingly, this study analyzed human factors according to types of marine accidents and extracted important five factors affecting navigation officers' fatigue through the questionnaire survey by means of literatures and 5-point scale. In addition, evaluation factors of marine accident risks caused by fatigue factors were divided and structured by using ISM. Lastly, it found out the importance of each fatigue factor drawn by AHP and decided marine accidents that were most highly caused by navigation officers' fatigue in order. At the result, weights were high as sleep time 0.385, stress 0.302, health condition 0.139, rest time 0.099, alcohol and drug 0.074 in fatigue factors, and death and injury 0.328, collision 0.308, grounding 0.195, sinking 0.094, fire accident 0.075 in evaluation factors of marine accident risks. Therefore, the control plan to lower marine accident risks should be prepared on the basis of high weight factors.

Estimation of the Terminal Velocity of the Worst-Case Fragment in an Underwater Torpedo Explosion Using an MM-ALE Finite Element Simulation (MM-ALE 유한요소 시뮬레이션을 이용한 수중 어뢰폭발에서의 최악파편의 종단속도 추정)

  • Choi, Byung-Hee;Ryu, Chang-Ha
    • Explosives and Blasting
    • /
    • v.37 no.3
    • /
    • pp.13-24
    • /
    • 2019
  • This paper was prepared to investigate the behavior of fragments in underwater torpedo explosion beneath a frigate or surface ship by using an explicit finite element analysis. In this study, a fluid-structure interaction (FSI) methodology, called the multi-material arbitrary Lagrangian-Eulerian (MM-ALE) approach in LS-DYNA, was employed to obtain the responses of the torpedo fragments and frigate hull to the explosion. The Euler models for the analysis were comprised of air, water, and explosive, while the Lagrange models consisted of the fragment and the hull. The focus of this modeling was to examine whether a worst-case fragment could penetrate the frigate hull located close (4.5 m) to the exploding torpedo. The simulation was performed in two separate steps. At first, with the assumption that the expanding skin of the torpedo had been torn apart by consuming 30% of the explosive energy, the initial velocity of the worst-case fragment was sought based on a well-known experimental result concerning the fragment velocity in underwater bomb explosion. Then, the terminal velocity of the worst-case fragment that is expected to occur before the fragment hit the frigate hull was sought in the second step. Under the given conditions, the possible initial velocities of the worst-case fragment were found to be very fast (400 and 1000 m/s). But, the velocity difference between the fragment and the hull was merely 4 m/s at the instant of collision. This result was likely to be due to both the tremendous drag force exerted by the water and the non-failure condition given to the frigate hull. Anyway, at least under the given conditions, it is thought that the worst-case fragment seldom penetrate the frigate hull because there is no significant velocity difference between them.

Probabilistic Braking Performance Analysis for Train Control System (열차제어시스템을 위한 확률적 제동성능분석)

  • Choi, Don Bum
    • Journal of The Korean Society For Urban Railway
    • /
    • v.6 no.4
    • /
    • pp.319-326
    • /
    • 2018
  • The safety interval to prevent collision between trains in a train control system is based on the braking distance according to the emergency braking of the train. The evaluation of the braking performance is based on the longitudinal train dynamics or the commissioning test in the test track, but since the conditions such as the weakening of the adhesion coefficient between the wheel and rail can not all be considered, these conventional methods are not sufficient to design of the train control systems. Therefore, in this study, the Monte Carlo Method (MCM) which can consider various environments is used to analyze braking performance and limitations. The braking model is based on the air braking used in the emergency braking and is modeled to take into account the braking pressure, efficiency, friction coefficient, adhesion condition, and vehicle mass distribution. It is confirmed that braking performance can be improved by controlling the quality of braking device. In addition, the change of the braking performance was confirmed according to the vehicle constituting the train. The results of this study are expected to be used as basic information for designing safety clearance for the train control systems and as a basis for improving the braking performance of railway vehicles.

A LiDAR-based Visual Sensor System for Automatic Mooring of a Ship (선박 자동계류를 위한 LiDAR기반 시각센서 시스템 개발)

  • Kim, Jin-Man;Nam, Taek-Kun;Kim, Heon-Hui
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.1036-1043
    • /
    • 2022
  • This paper discusses about the development of a visual sensor that can be installed in an automatic mooring device to detect the berthing condition of a vessel. Despite controlling the ship's speed and confirming its location to prevent accidents while berthing a vessel, ship collision occurs at the pier every year, causing great economic and environmental damage. Therefore, it is important to develop a visual system that can quickly obtain the information on the speed and location of the vessel to ensure safety of the berthing vessel. In this study, a visual sensor was developed to observe a ship through an image while berthing, and to properly check the ship's status according to the surrounding environment. To obtain the adequacy of the visual sensor to be developed, the sensor characteristics were analyzed in terms of information provided from the existing sensors, that is, detection range, real-timeness, accuracy, and precision. Based on these analysis data, we developed a 3D visual module that can acquire information on objects in real time by conducting conceptual designs of LiDAR (Light Detection And Ranging) type 3D visual system, driving mechanism, and position and force controller for motion tilting system. Finally, performance evaluation of the control system and scan speed test were executed, and the effectiveness of the developed system was confirmed through experiments.