• Title/Summary/Keyword: Collision bulkhead

Search Result 11, Processing Time 0.04 seconds

Collision Response of Bow Structure and Its Affected Collision Bulkhead in Bow Design (선수부 설계시 구조거동과 충돌격벽에 미치는 영향)

  • 신영식;박명규
    • Journal of Korean Port Research
    • /
    • v.14 no.2
    • /
    • pp.219-231
    • /
    • 2000
  • In this paper a complicated structural behavior in collision and its effects of energy translation to the collision bulkhead was examined through a methodology of the numerical simulation to obtain a ideal bow construction and a location of collision bulkhead against head on collision. In the present the bow structure is normally designed in consideration of its specific structural arrangements and internal and external loads in these area such as hydrostatic and dynamic pressure, wave impact and bottom slamming in accordance with the Classification rules, and the specific location of collision bulkhead by SOLAS requirement. By these studies the behavior of the bow collapse due to collision was synthetically evaluated for the different size of tankers and its operational speed limits, and by the results of these simulation it provides the optimal design concept for the bow construction to prevent the subsequent plastic deformation onto or near to the collision bulkhead boundary and to determine the rational location of collision bulkhead.

  • PDF

Numerical Simulation of Structural Response in Bow Collision (1st Report) (선수 충돌시 구조 붕괴 거동에 대한 수치해석(제1보))

  • 박명규
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.2
    • /
    • pp.28-35
    • /
    • 2000
  • In this paper a complicated structural behavior in collision and its effect of energy transmission to the collision bulkhead was examined through a methodology of the numerical simulation to obtain a ideal bow construction and a location of collision bulkhead against heat on collision. At present the bow structure is normally designed in consideration of its specific structural arrangement and internal and external loads in these areas such as hydrostatic and dynamic pressure wave impact and bottom slamming in accordance with the Classification rules and the specific location of collision bulkhead by SOLAS requirement. By these studies the behavior of the bow collapse due to collision was synthetically evaluated for the different size of tankers and its operational speed limits and by the results of these simulation it provides the optimal design concept for the bow construction to prevent the subsequent plastic deformation onto or near to the collision bulkhead boundary and to determine the rational location of collision bulkhead.

  • PDF

Collision Response of Bow Structure and Its Affected Collision Bulkhead in Bow Collision (선수 충돌시 구조거동과 충돌격벽에 미치는 영향)

  • 신영식;박명규
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.195-204
    • /
    • 2000
  • In this paper a complicated structural behavior in collision and its effect of energy translation to the collision bulkhead was examined through a methodology of the numerical simulation to obtain a ideal bow construction and a location of collision bulkhead against head on collision. In the present the bow structure is normally designed in consideration of its specific structural arrangements and internal and external loads in these area such as hydrostatic and dynamic pressure, wave impact and bottom slamming in accordance with the Classification rules, and the specific location of collision bulkhead by SOLAS requirement. By these studies the behavior of the bow collapse due to collision was synthetically evaluated for the different size of tankers and its operational speed limits, and by the result of these simulation it provides the optimal design concept for the low construction to prevent the subsequent plastic deformation onto or near to the collision bulkhead boundary and to determine the rational location of collision bulkhead.

  • PDF

A study on the Crashworthiness Design of Bow Structure of Oil Carriers -Collision Behaviour of Simplified Models(1) (유조선 선수부의 내충돌 구조설계에 관한 연구 -이상화 모델의 충돌거동 분석(1))

  • 신영식;박명규
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.3
    • /
    • pp.120-127
    • /
    • 2001
  • The potential pollution problems resulting from tanker collision necessitate the requirement for an effective structural design and the development of relevant safety regulations. During a few decades, the great effort has been made by the international Maritime Organization and the Administration, etc, to reduce oil spillage from collision accidents. However there is still a need for investigation in the light of structural evaluation method for the experiments and rational analysis, and design development for an operational purpose of ships. This study aims for investigating a complicated structural response of bow structures of simplified models and oil carriers for assessing the energy dissipation and crushing mechanics of the striking vessels through a methodology of the numerical analysis for the various models and its design changes. Through these study an optimal bow construction absorbing great portion of kinetic energy at the least penetration depth prior to reach to the cargo area and an effective location of collision bulkhead are investigated. In order to obtain a rational results in this study, three stages of collision simulation procedures have been performed step by step as follows; 1) 16 simplified ship models are used to investigate the structural response against bow collision with variation of primary and secondary members. Mass and speed are also varied in four conditions. 2) 21 models consisted of 5 sizes of the full scaled oil carriers are used to perform the collision simulation with the various sizes and deadweight delivered in a recent which are complied with SOLAS and MARPOL. 3) 36 models of 100l oil carrier are used to investigate the structural response and its influence to the collision bulkhead against bow collision in variation with location of collision bulkhead, primary members, framing system and colliding conditions, etc. By the first study using simplified models the response of the bow collision is synthetically evaluated for the parameters influencing to the absorbed energy, penetration depth and impact force, etc.

  • PDF

A Study on the Crashworthiness Design of Bow Structure of Oil Carriers (유조선 선수부의 내충돌 구조설계에 관한 연구)

  • 신영식;박명규
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.119-126
    • /
    • 2001
  • The potential pollution problems resulting from tanker collision necessitate the requirement for an effective structural design and the development of relevant safety regulation. During a few decades, the great effort has been made by International Maritime Organization and the Administration, etc, to reduce oil spillage from collision accidents. However there is still a need for investigation in the light of structural evaluation method for the experiments and rational analysis, and design development for an operational purpose of ships. This study is aimed at investigating a complicated structural response of bow structures of oil carriers for assessing the energy dissipation and crushing mechanics of striking vessel through a methodology of the numerical analysts for the various models and its design changes. Through this study an optimal bow construction absorbing great portion of kinetic energy in the least penetration depth prior to reach to the cargo area and an effective location of collision bulkhead are investigated. In order to obtain a rational results in this study, three stages of response analysis procedures are performed as follows; 1). 16 simplified ship models are used to investigate the structural response against bow collision with variation of primary and secondary members. Mass and speed are also varied in two conditions. 2). 21 models conisted of 5 size of full scaled oil carriers are used to perform the collision simulation with the various sizes and deadweight delivered in a recent which are complied with SOLAS and MARPOL. 3). 36 models of 100k oil carrier are used to investigate the structural response and its influence to the collision bulkhead against bow collision in variation with location of collision bulkhead, primary mombers, framing system and colliding conditions, etc.

  • PDF

Collision Analysis of Longitudinal Bulkhead of Container/RO-RO Ship with Trailer (컨테이너/로로 선 종격벽의 트레일러 충돌해석)

  • Kang, Myung-Hun;Song, In;Lee, Sang-Kyun;Kim, Sang-Kon;Cho, Sang-Rai
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2013.12a
    • /
    • pp.13-20
    • /
    • 2013
  • In this paper, a collision accident of a container/Ro-Ro ship was numerically analyzed. A container trailer collided with a longitudinal bulkhead of the ship in the accident, which constituted a longitudinal wall of a heavy fuel oil tank. Due to the accident, the bulkhead plate was ruptured and the heavy fuel oil spilled out of the tank. The detailed information regarding the collision velocity and the mass of the trailer was not provided. Therefore, several collision accident scenarios were constructed based upon the arrangement of the ramp way. Each collision accident scenario was analyzed to predict the extents of damage using a commercial numerical package, ABAQUS. Based on the analysis results it is proposed how to minimize the extents of damage. Through the investigations performed in this study it was found that the understandings of various damages due to collision accidents and the developments of structural design guidance against collision are necessary for the betterment of Container/RO-RO ships' performance.

  • PDF

A Study on Design Method of Blast Hardened Bulkhead Considering the Response of Shock Impulse (충격량에 대한 응답을 고려한 폭발강화격벽 설계 방법 연구)

  • Myojung Kwak;Joonyoung Yoon;Seungmin Kwon;Yoojeong Noh
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.1
    • /
    • pp.10-19
    • /
    • 2023
  • Blast Hardened Bulkhead (BHB) is an important measure that can increase the ship's survivability as well as protect the lives of the crew by mitigating the damage extent caused by an internal explosion in the ship. In particular, both the pressure and the shock impulse should be considered when designing the BHB against reflected shock waves having a high pressure with a short duration. This study proposes a design method for BHB that considers both the pressure and the shock impulse generated during the internal explosion. In addition, analysis and design concepts for accident loads such as explosion, fire, and collision of NORSOK and DNVGL, one of the international design guidelines for the curtain plate type blast hardened bulkhead type applied by the Korean Navy, are utilized. If this method is applied, it is expected that it can be used as a design concept for the pressure as well as the shock impulse of the explosion load of the curtain plate.

Wave Impact Pressures Acting on the Underwater Tunnel Bulkhead under Construction - Numerical Analysis and Hydraulic Model Experiment - (시공 중 수중터널 벌크헤드에 작용하는 충격쇄파압 - 수치해석 및 수리모형실험 -)

  • Kim, Sun-Sin;An, Dong-Hyuk;Chun, In-Sik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.2
    • /
    • pp.139-146
    • /
    • 2011
  • The breaking wave pressure occurs when a plunging breaker instantaneously impinges on structural surface, and appears differently depending on whether or not to form air pockets at the instant of contact. The Wagner type normally forms a single pressure peak at the contact spot due to the direct collision of water volume to the structure whereas in the Bagnold type the time lagged oscillation of the air pocket causes pressure peaks even at areas away from the spot. In the present study, the Bagnold's impact pressure is numerically and experimentally investigated for the bulkhead of an underwater tunnel under construction which is subjected to nearby breaking waves. A numerical solver of Navier-Stokes equations was applied to reproduce the breaking waves near a bulkhead, and the results showed the Bagnold's impact pressure occurring on the back (land side) face of the bulkhead. The existence of the impact pressure was also verified by a hydraulic model testing, and it was found that the experimental results well conformed to their numerical counterparts.

A study on machine simulation application of aircraft parts in 5 axises horizontal machine (항공기 부품의 5축 수평형 공작기계 머신 시뮬레이션 적용에 관한 연구)

  • 이인수;김남경;김해지;장정환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.367-372
    • /
    • 2003
  • This paper shows about the machine simulation embodiment when it happened NC equipment and between workpiece and interference collision at 5 axises processing of aircraft parts. And this research has been chosen because of the highest equipment interference occurrence rate at aircraft parts processing of 5 axises horizontal machine. It can verify simulation and machining process through correlation about their dynamic relations. interference, collision as embodied virtual manufacturing system of machining tool, workpiece, and holder etc. that is necessary element in shape of machine tool and function and processing in imagination ball. Also. it verified about interference and collision between NC equipment parts and workpiece, for applied machine simulation to NC Data of actuality aircraft parts of BULKHEAD and FRAME.

  • PDF

A study on structural analysis for suezmax tanker applied CSR-H (CSR-H를 적용한 SUEZMAX급 TANKER의 구조해석 결과 및 고찰)

  • Parkr, Sung-Young
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2017.10a
    • /
    • pp.73-79
    • /
    • 2017
  • IACS enacted Harmonized CSR(CSR-H) to meet the IMO GBS applied from 1 July 2016. CSR-H is clearly complement and integrate than present CSR-BC & CSR-OT. One of the biggest issue in new rule is structural analysis. In CSR-H, structural analysis must carried out entire each cargo area including the aft bulkhead of the aftermost cargo hold and the collision bulkhead. Accordingly, new load and boundary conditions are present, an additional structural reinforcement is required by the structural analysis result for each cargo hold. In this study, we applied CSR-H to existing 158K DWT CLASS CRUDE OIL TANKER in order to compare and analyze the hull changes. It is useful for the application of the CSR-H to the similar vessel and helpful in finding the optimized structural design.

  • PDF