• Title/Summary/Keyword: Collision behavior

Search Result 260, Processing Time 0.026 seconds

Large-Scale Realtime Crowd Simulation Using Image-Based Affordance and Navigation Potential Fields (이미지 기반의 유도장과 항해장을 활용한 실시간 대규모 군중 시뮬레이션)

  • Ok, Soo-Yol
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.9
    • /
    • pp.1104-1114
    • /
    • 2014
  • In large-scale crowd simulations, it is very important for the decision-making system of manipulating interactive behaviors to minimize the computational cost for controlling realistic behaviors such as collision avoidance. In this paper, we propose a large-scale realtime crowd simulation method using the affordance and navigation potential fields such as attractive and repulsive forces of electromagnetic fields. In particular, the model that we propose locally handles the realistic interactions between agents, and thus radically reduces the cost of expensive computation on interactions which has been the most problematic in crowd simulation. Our method is widely applicable to the expression and analysis of various crowd behaviors that are needed in behavior control in computer games, crowd scenes in movies, emergent behaviors of evacuation, etc.

Nonlinear Model Predictive Control for Multiple UAVs Formation Using Passive Sensing

  • Shin, Hyo-Sang;Thak, Min-Jea;Kim, Hyoun-Jin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.1
    • /
    • pp.16-23
    • /
    • 2011
  • In this paper, nonlinear model predictive control (NMPC) is addressed to develop formation guidance for multiple unmanned aerial vehicles. An NMPC algorithm predicts the behavior of a system over a receding time horizon, and the NMPC generates the optimal control commands for the horizon. The first input command is, then, applied to the system and this procedure repeats at each time step. The input constraint and state constraint for formation flight and inter-collision avoidance are considered in the proposed NMPC framework. The performance of NMPC for formation guidance critically degrades when there exists a communication failure. In order to address this problem, the modified optimal guidance law using only line-of-sight, relative distance, and own motion information is presented. If this information can be measured or estimated, the proposed formation guidance is sustainable with the communication failure. The performance of this approach is validated by numerical simulations.

Manufacture and Bending Behavior of Stainless Steel Cylindrical Shell Filled with Aluminum Alloy Foam (다공성 알루미늄 합금이 충진된 스테인레스 강 원통 Shell의 제조 및 굽힘거동)

  • Kim, Am-Kee;Lee, Hyo-Jin;Cho, Seong-Seock
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.19-24
    • /
    • 2003
  • Potential applications of foam-filled section are the automotive structures. A foam-filled section can be used for the front rail and firewall structures to absorb impact energy during frontal or side collision. In the case of side collision where bending is involved in the crushing mechanics, the foam filler will be significant in maintaining progressive crushing of the thin-walled structures so that more impact energy can be absorbed. In this study, the manufacturing process of closed cell aluminum alloy foam filled stainless steel tube was studied, and the various foam filled specimens including piecewise fillers were prepared, tested and discussed about the bending behaviors.

  • PDF

Dynamics in Carom and Three Cushion Billiards

  • Han Inhwan
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.976-984
    • /
    • 2005
  • This paper presents the analysis results of dynamics in the billiards game within the frame­work of rigid-body mechanics and a numerical simulation program. The friction exists between the ball and the table bed as well as between the ball and the rail. There are three parts in the dynamic behavior of the ball on the table bed; motion of the ball on the table bed, collision between balls, and collision between the ball and the cushion. During the development of the simulation program, the dynamics problems such as rolling motion and three-dimensional frictional impact motion have been analyzed in detail. The theoretical issues are implemented into a viable graphic simulation program and its efficacy is demonstrated through the experi­mental validation of the billiards game. The resulting analysis results are verified quantitatively and qualitatively using high-speed video camera. Through the experimental tests, it was found that the physical parameters such as coefficients of restitution and friction vary according to the motion variables and corresponding empirical formulations were developed. The simulation and experimental results agree well.

Formal Modeling and Verification of an Enhanced Variant of the IEEE 802.11 CSMA/CA Protocol

  • Hammal, Youcef;Ben-Othman, Jalel;Mokdad, Lynda;Abdelli, Abdelkrim
    • Journal of Communications and Networks
    • /
    • v.16 no.4
    • /
    • pp.385-396
    • /
    • 2014
  • In this paper, we present a formal method for modeling and checking an enhanced version of the carrier sense multiple access with collision avoidance protocol related to the IEEE 802.11 MAC layer, which has been proposed as the standard protocol for wireless local area networks. We deal mainly with the distributed coordination function (DCF) procedure of this protocol throughout a sequence of transformation steps. First, we use the unified modeling language state machines to thoroughly capture the behavior of wireless stations implementing a DCF, and then translate them into the input language of the UPPAAL model checking tool, which is a network of communicating timed automata. Finally, we proceed by checking of some of the safety and liveness properties, such as deadlock-freedom, using this tool.

Low Energy Ion-Surface Reactor

  • Choi, Won-Yong;Kang, Tae-Hee;Kang, Heon
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.4
    • /
    • pp.290-296
    • /
    • 1990
  • Ion-surface collision studies at low kinetic energies (1-100 eV) provide a unique opportunity for investigating reactions and collision dynamics at surfaces. A special ion optics system for generating an energy- and mass-selected ion beam of this energy is designed and constructed. An ultrahigh vacuum (UHV) reaction chamber, in which the ions generated from the beamline collide with a solid surface, is equipped with Auger electron spectroscopy (AES) and thermal desorption spectrometry (TDS) as in-situ surface analytical tools. The resulting beam from the system has the following characteristics : ion current of 5-50 nA, energy spread < 2eV, current stability within ${\pm}5%,$ and unit mass resolution below 20 amu. The performance of the instrument is illustrated with data representing the implantation behavior of $Ar^+$ into a graphite (0001) surface.

A Study on the Development of Collision Avoidance System for Small-Sized Vessel Using WAVE Communication Technology (WAVE 통신기반 소형 선박 충돌회피 보조시스템 개발)

  • KIM, Mong-Ju;OH, Joo-Seok;NAM, Yong-Yun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.1
    • /
    • pp.8-14
    • /
    • 2020
  • According to the statistics provided by Korean Maritime Safety Tribunal for the year 2018, the majority of marine accidents in the past four years have occurred in fishing boats and small-sized boats. Negligent behavior resulting from not looking outside and non-compliance with navigation laws are the primary reasons behind ship collisions. Although safety education and training are reinforced to prevent such accidents, they still occur frequently. Hence, technical methods are continuously being developed to reduce ship collisions caused by human cause. The objective of this study is to reduce ship collisions by employing the WAVE communication system, which has short transmitting and receiving periods that can be incorporated for high-speed small-sized vessels. In this study, the suitability of the communication range was examined, and the appropriate range and timing for avoidance motion were accordingly selected, and a control algorithm based on the same was thereby designed. Consequently normal operation of the collision avoidance system was verified by connecting and simulating the proposed WAVE communication router-controller-steering equipment.

Avoiding Inter-Leg Collision for Data-Driven Control (데이터 기반보행 제어를 위한 다리 간 충돌 회피 기법)

  • Lee, Yoonsang
    • Journal of the Korea Computer Graphics Society
    • /
    • v.23 no.2
    • /
    • pp.23-27
    • /
    • 2017
  • We propose an inter-leg collision avoidance method that compensates the disadvantage of the data-driven biped control method. The data-driven biped control technique proposed by Lee et. al [1] sometimes generates the movement that the two legs intersect with each other while walking, which can not be realized in walking of a real person or a biped robot. The proposed method changes the angle of the swing hip so that the swing foot can move inward only after passing the stance foot. This process introduces an additional angle adjustment algorithm to avoid collisions with the stance leg to the original feedback rule of the stance hip. It generates a stable walking simulation without any inter-leg collisions, by adding minimal changes and additional calculations to the existing controller behavior.

A Study on Ship Collision Avoidance Algorithm by COLREG (국제해상충돌예방규칙에 따른 충돌회피 알고리즘에 관한 연구)

  • Kim, Dong-Gyun;Jeong, Jung-Sik;Park, Gyei-Kark
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.3
    • /
    • pp.290-295
    • /
    • 2011
  • On the basis of DCPA(Distance to Closest Point of Approach) and TCPA(Time to CPA), the conventional algorithms for collision avoidances have a drawback that the '72 CORLEGs(International Regulations for Preventing Collisions at Sea, 1972) has not taken into account to prevent collisions between ships. In this paper, the proposed algorithm decides whether the own ship is a give-way vessel or a stand-on vessel by observing the relative bearing of the encountered ship. To determine the ship position and time for collision avoidance, the proposed algorithm utilizes the ellipse model for ship safety domain. The computer simulation is done to represent the process of adversive behavior. Using the proposed method, the past maritime accident is analyzed. The proposed method can be effectively applied to collision avoidance by CORLEGs even when the target ship's navigational lights is invisible in poor weather and/or in the restricted visibility.

Analysis of driver behavior related to frontal vehicle collision direction (정면충돌의 충돌방향과 관련된 운전자의 행동분석)

  • Lee, Myung-Lyeol;Kim, Ho-Jung;Lee, Kang-Hyun;Kim, Sang-Chul;Lee, Hyo-Ju;Choi, Hyo-Jueng
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.530-537
    • /
    • 2016
  • This study investigates frontal crashes, analyzes the driver's action related to the change of the collision direction and determines the severity of (bodily injury). This study was conducted from August, 2013, to January, 2014, and the data for the car damage and human body damage were collected by emergency medical teams. In terms of data collection, we collected the accident vehicle, crash direction, body damage, etc., based on the Korea In-depth Accident Study (KIDAS) and Injury Severity Score (ISS). We used Minitab 17 and SPSS 22.0 to do the frequency analysis and ANOVA. In the analysis results, the prevalence of frontal collisions was 55.8% and mostly occurred in the 12 o'clock direction. In the analysis of the frontal crash direction according to age, the average ages for the 11, 12 and 1 o'clock directions were $46.46{\pm}13.47$, $44.43{\pm}13.40$ and $52.46{\pm}12.04$, respectively, so the older age drivers had a high probability of the accident occurring in the 1 o'clock direction. In the analysis of men's frontal collision direction according to age, the average ages in the 11, 12 and 1 o'clock directions were $47.10{\pm}13.88$, $45.24{\pm}13.78$ and $55.73{\pm}13.38$, respectively, so older aged men had a high probability of having collisions in the 1 o'clock direction. However, the statistical analysis of the frontal crash direction according to age in women didn't show any meaningful trend. When comparing the ISS according to age of the men and women in the collision direction, the men were less likely to have a 12 o'clock collision when $ISS{\geq}9$ and more likely to have a 1 o'clock collision when ISS<9. As a result, frontal crashes are more likely to occur in the 12 o'clock direction and the ISS decreases because the likelihood of frontal crashes in the 1 o'clock direction increases with increasing age. Therefore, when men recognize that they are heading for a 12 o'clock direction collision, they try to steer to the left to reduce the body damage.