• Title/Summary/Keyword: Collision Tracking

Search Result 95, Processing Time 0.023 seconds

Vision-based Real-time Vehicle Detection and Tracking Algorithm for Forward Collision Warning (전방 추돌 경보를 위한 영상 기반 실시간 차량 검출 및 추적 알고리즘)

  • Hong, Sunghoon;Park, Daejin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.7
    • /
    • pp.962-970
    • /
    • 2021
  • The cause of the majority of vehicle accidents is a safety issue due to the driver's inattention, such as drowsy driving. A forward collision warning system (FCWS) can significantly reduce the number and severity of accidents by detecting the risk of collision with vehicles in front and providing an advanced warning signal to the driver. This paper describes a low power embedded system based FCWS for safety. The algorithm computes time to collision (TTC) through detection, tracking, distance calculation for the vehicle ahead and current vehicle speed information with a single camera. Additionally, in order to operate in real time even in a low-performance embedded system, an optimization technique in the program with high and low levels will be introduced. The system has been tested through the driving video of the vehicle in the embedded system. As a result of using the optimization technique, the execution time was about 170 times faster than that when using the previous non-optimized process.

Leading Vehicle State Estimator for Adaptive Cruise Control and Vehicle Tracking

  • Lee, Choon-Young;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.181-184
    • /
    • 1999
  • Leading vehicle states are useful and essential elements in adaptive cruise control (ACC) system, collision warning (CW) and collision avoidance (CA) system, and automated highway system (AHS). There are many approaches in ACC using Kalman filter. Mostly only distance to leading vehicle and velocity difference are estimated and used for the above systems. Applications in road vehicle in curved road need to obtain more informations such as yaw angle, steering angle which can be estimated using vision system. Since vision system is not robust to environment change, we used Kalman filter to estimate distance, velocity, yaw angle, and steering angle. Application to active tracking of target vehicle is shown.

  • PDF

Development of Joint Controller and Collision Detection Methods for Series Elastic Manipulator of Relief Robot (구호로봇용 연성 매니퓰레이터를 위한 조인트 제어 및 충돌감지 알고리즘)

  • Jung, Byung-jin;Kim, Tae-Keun;Won, Geon;Kim, Dong Sup;Hwang, Junghun
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.3
    • /
    • pp.157-163
    • /
    • 2018
  • This paper deals with the development and application of control algorithms for series elastic relief robots for rescue operations in harsh environment like disasters or battlefield. The joint controller applied in this paper has a cascade structure combining inner loop for torque control and outer loop for position control. The torque loop contains feedforward and feedback controller and disturbance observer for independent, decentralized joint control. The effect of the elastic component and motor dynamics are treated as the nonlinear disturbance and compensated with the disturbance observer of torque controller. For the collision detection, Band Designed Disturbance Observer is configured to recognize/respond to external disturbance robustly in the continuously changing environment. The controller is applied to a 7-dof series elastic manipulator to evaluate the torque tracking and collision detection/response performance.

Analysis of the KARISMA Orbit Determination Performance for the Radar Tracking Data (우주파편 충돌위험 종합관리 시스템의 레이더 관측 데이터 처리 결과 비교 분석)

  • Cho, Dong-Hyun;Kim, Hae-Dong;Lee, Sang-Cherl
    • Aerospace Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.123-130
    • /
    • 2013
  • Many countries tried to design the collision risk management system to protect their own satellites from collision probability due to the space debris. In this situation, KARI(Korea Aerospace Research Institute) is developing the KARISMA(KARI Conjunction Risk Management System) to protect our operating satellites from these space debris. The quality of this system is depending on the accuracy of orbit determination for the space debris which has collision risk. Therefore, this system must treat many kinds of measurement data types to estimate the orbit of space debris. In this paper, to handle the radar observation data widely used for these space debris, the orbit determination system was applied with simulated radar tracking data for the KOMSAT-2 which has precise orbit determination data.

Methodology for Evaluating Real-time Rear-end Collision Risks based on Vehicle Trajectory Data Extracted from Video Image Tracking (영상기반 실시간 후미추돌 위험도 분석기법 개발)

  • O, Cheol;Jo, Jeong-Il;Kim, Jun-Hyeong;O, Ju-Taek
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.5
    • /
    • pp.173-182
    • /
    • 2007
  • An innovative feature of this study is to propose a methodology for evaluating safety performance in real time based on vehicle trajectory data extracted from video images. The essence of evaluating safety performance is to capture unsafe car-following events between individual vehicles traveling surveillance area. The proposed methodology applied two indices including real-time safety index (RSI) based on the concept of safe stopping distance and time-to-collision (TTC) to the evaluation of safety performance. It is believed that outcomes would be greatly utilized in developing a new generation of video images processing (VIP) based traffic detection systems capable of producing safety performance measurements. Relevant technical challenges for such detection systems are also discussed.

Theoretical Approach of Optimization of the Gain Parameters α, β and γ of a Tracking Module for ARPA system on Board Warships

  • Jeong, Tae-Gweon;Pan, Bao-Feng;Njonjo, Anne Wanjiru
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2015.10a
    • /
    • pp.55-57
    • /
    • 2015
  • The tracking system plays a key role in accurate estimation and prediction of maneuvering vessel's position and velocity in a bid to enhance safety by taking avoiding action against collision. Therefore, in order to achieve this, many ocean- going vessels are equipped with radar and the ARPA system. However, the accuracy of prediction highly depends on the choice of the gain parameters, ${\alpha}$, ${\beta}$ and ${\gamma}$ employed in the tracking filter. P revious research of this paper was based on theoretically developing an algorithm for a tracking module. This research paper is hence a continuation by the authors to determine the optimal values of the gain parameters used in the tracking module. A tracking algorithm is developed using the ${\alpha}-{\beta}-{\gamma}$ filter to carry out prediction and smoothing of the positions and velocities. Numerical simulations are then performed to evaluate the optimal values of the smoothing parameters that will improve the performance of the tracking module and reduce measurement noise. The twice distance root mean square (2drms) is then calculated to determine error variation.

  • PDF

Tracing Metallicity in the Scenario of High Velocity Clouds (HVCs) Colliding with our Milky Way

  • Sung, Kwang Hyun;Kwak, Kyujin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.77.2-77.2
    • /
    • 2014
  • Questions of how our Milky Way evolves through the interaction with its environment have been constantly raised. One particularly interesting question is how the metallicity would change as our Milky Way goes through collision with HVCs. Because of the possibility of HVCs providing fuel for star formation in the Galactic disk, we simulate the collision between HVCs and the Galactic disk. More specifically, we trace how the Galactic metallicity changes throughout the process of HVCs colliding with our Milky Way based upon a specific scenario that HVCs are primordial gas left-overs from an ancient galaxy formation. Such mixing between metal-rich gas (disk) and metal-poor HVC can be traced by running numerical simulations with the FLASH code due to its capability of tracking down the abundance change of a specific element such as carbon at each time step of the hydrodynamic evolution. As for now, we give how this mixing depends on model parameters that we choose such as collision speed, initial metallicities, temperature and so on.

  • PDF

A Numerical Analysis of the Binary Droplet Collision by Using a Level Set Method (레벨셋 방법을 이용한 액적 충돌에 대한 수치해석)

  • Lee, Sang-Hyuk;Hur, Nahm-Keon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.4
    • /
    • pp.353-360
    • /
    • 2011
  • The prediction of binary droplet collisions is important in the formation of falling drops and the evolution of sprays. The droplet velocity, impact parameter, and drop-size ratio influence the interaction between the droplets. The effect of these parameters results in complicated collision phenomena. Droplet collisions can be classified into four types of interactions: bouncing, coalescence, reflexive separation, and stretching separation. In the present study, the interfacial flow problem of the droplet collision was numerically simulated by using the level set method. 2D axisymmetric simulations on the head-on collisions and 3D simulation on the off-center collisions were performed. The numerical results of droplet behavior after the collision agreed well with the experimental and analytical results. The mixing of the mass of the initial droplets after the collision was also predicted by using different species index of colliding droplets.

Analysis of Orbit Determination of the KARISMA Using Radar Tracking Data of a LEO Satellite (저궤도위성의 레이더 관측데이터를 이용한 KARISMA의 궤도결정 결과 분석)

  • Cho, Dong-Hyun;Kim, Hae-Dong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.11
    • /
    • pp.1016-1027
    • /
    • 2015
  • In this paper, a orbit determination process was carried out based on KARISMA(KARI Collision Risk Management System) developed by KARI(Korea Aerospace Research Institute) to verify the orbit determination performance of this system, in which radar tracking data of a space debris was used. The real radar tracking data were obtained from TIRA(Tracking & Imaging Radar) system operated by GSOC(German Space Operation Center) for the KITSAT-3 finished satellite. And orbit determination error was approximately 60m compared to that of the GSOC's orbit determination result from the same radar tracking data. However, those results were influenced due to the insufficient information on the radar tracking data, such as error correction. To verify and confirm it, the error analysis was demonstrated and first observation data arc which has huge observation error was rejected. In this result, the orbit determination error was reduced such as approximately 25m. Therefore, if there are some observation data information such as error correction data, it is expected to improve the orbit determination accuracy.

Haptic Rendering Algorithm for Collision Situation of Two Objects (두 객체가 충돌하는 상황에서의 햅틱 렌더링 알고리즘)

  • Kim, Seonkyu;Kim, Hyebin;Ryu, Chul
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.3
    • /
    • pp.35-41
    • /
    • 2018
  • In this paper, we define a haptic rendering algorithm for a situation that has collision between static object and single object. We classified video scenes into four categories which can be easily seen in video sequence. The proposed algorithm can detect which frame is suitable for haptic rendering by detecting the change of direction using motion estimation and change of shape using object tracking. As a result, a total of 13 frames are extracted from the sample video and playing time of these frames were calculated. We confirmed that the haptic effect appears in expected playing time by adding the appropriate haptic generating waveform thtough the haptic editing program.