• 제목/요약/키워드: Collision Speed

검색결과 503건 처리시간 0.036초

신경회로망을 이용한 이중암 로봇의 충돌회피를 위한 최적작업계획 (Optimal Task Planning for Collision-Avoidance of Dual-Arm Robot Using Neural Network)

  • 최우형
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 춘계학술대회논문집 - 한국공작기계학회
    • /
    • pp.176-181
    • /
    • 2000
  • Collision free task planning for dual-arm robot which perform many subtasks in a common work space can be achieved in two steps : path planning and trajectory planning. path planning finds the order of tasks for each robot to minimize path lengths as well as to avoid collision with static obstacles. A trajectory planning strategy is to let each robot move along its path as fast as possible and delay one robot at its initial position or reduce speed at the middle of its path to avoid collision with the other robot.

  • PDF

자율운항선박의 선회특성이 충돌회피에 미치는 영향 (Effect of Turning Characteristics of Maritime Autonomous Surface Ships on Collision Avoidance)

  • 임정빈
    • 한국항해항만학회지
    • /
    • 제45권6호
    • /
    • pp.298-305
    • /
    • 2021
  • 자율운항선박(Maritime Autonomous Surface Ships, MASS)의 선회특성이 충돌회피에 미치는 영향을 식별하는 것은 MASS의 충돌회피에 핵심적인 단서를 제공할 수 있다. 본 연구의 목적은 다양한 타각과 선속에 의해서 변할 수 있는 선회특성이 충돌회피에 미치는 영향을 식별하기 위한 것이다. 선회특성이 충돌회피에 미치는 영향은 전장 161 미터 선박의 수학 모델을 이용하여 선회권을 관측한 후, 네 가지 충돌조우상황에 대한 충돌회피 수치 시뮬레이션의 결과를 이용하여 분석하였다. 두 선박 사이의 최소상대거리와 최소시간을 평가 변수로 이용하여 평가한 결과, 타각은 최소상대거리의 변화에 주요한 영향을 미치고, 선박의 속력은 최소시간의 변화에 주요한 영향을 미치는 것으로 나타났다. 본 연구에서 제안한 평가 방법은 MASS의 원격제어에서 충돌회피를 하나의 방법으로 적용 가능할 것으로 기대된다.

모형자동차 충돌시험의 데이터베이스를 이용한 측면 충돌사고 재구성 (A Study on the Side Collision Accident Reconstruction Using Database of Crush Test of Model Cars)

  • 손정현;박석천;김광석
    • 한국자동차공학회논문집
    • /
    • 제17권2호
    • /
    • pp.49-56
    • /
    • 2009
  • In this study, a side collision accident reconstruction using database based on the deformed shape information from the collision test using model cars is suggested. A deformation index and angle index related to the deformed shape is developed to set the database for the collision accident reconstruction algorithm. Two small size RC cars are developed to carry out the side collision test. Several side collision tests according to the velocity and collision angles are performed for establishing the side collision database. A high speed camera with 1000fps is used to capture the motion of the car. A side collision accident reconstruction algorithm is developed and applied to find the collision conditions before the accident occurs. Two collision cases are tested to validate the database and the algorithm. The results obtained by the reconstruction algorithm show good match with original conditions with regard to the velocity and angle.

동력경운기의 경사지견인 및 주행특성에 관한 연구 (II)-동력경운기-트레일러계의 욍골동 및 동횡전도한계 (Study on the Travel and Tractive Characteristics of The Two-Wheel Tractor on the General Slope Ground (II)-Dynamic Side-overturn of the Tiller-trailer System-)

  • 송현갑;정창주
    • Journal of Biosystems Engineering
    • /
    • 제3권1호
    • /
    • pp.1-19
    • /
    • 1978
  • Power tiller is a major unit of agricultural machinery being used on farms in Korea. About 180.000 units are introduced by 1977 and the demand for power tiller is continuously increasing as the farm mechanization progress. Major farming operations done by power tiller are the tillage, pumping, spraying, threshing, and hauling by exchanging the corresponding implements. In addition to their use on a relatively mild slope ground at present, it is also expected that many of power tillers could be operated on much inclined land to be developed by upland enlargement programmed. Therefore, research should be undertaken to solve many problems related to an effective untilization of power tillers on slope ground. The major objective of this study was to find out the travelling and tractive characteristics of power tillers being operated on general slope ground.In order to find out the critical travelling velocity and stability limit of slope ground for the side sliding and the dynamic side overturn of the tiller and tiller-trailer system, the mathematical model was developed based on a simplified physical model. The results analyzed through the model may be summarized as follows; (1) In case of no collision with an obstacle on ground, the equation of the dynamic side overturn developed was: $$\sum_n^{i=1}W_ia_s(cos\alpha cos\phi-{\frac {C_1V^2sin\phi}{gRcos\beta})-I_{AB}\frac {v^2}{Rr}}=0$$ In case of collision with an obstacle on ground, the equation was: $$\sum_n^{i=1}W_ia_s\{cos\alpha(1-sin\phi_1)-{\frac {C_1V^2sin\phi}{gRcos\beta}\}-\frac {1}{2}I_{TP} \( {\frac {2kV_2} {d_1+d_2}\)-I_{AB}{\frac{V^2}{Rr}} \( \frac {\pi}{2}-\frac {\pi}{180}\phi_2 \} = 0 $$ (2) As the angle of steering direction was increased, the critical travelling veloc\ulcornerities of side sliding and dynamic side overturn were decreased. (3) The critical travelling velocity was influenced by both the side slope angle .and the direct angle. In case of no collision with an obstacle, the critical velocity $V_c$ was 2.76-4.83m/sec at $\alpha=0^\circ$, $\beta=20^\circ$ ; and in case of collision with an obstacle, the critical velocity $V_{cc}$ was 1.39-1.5m/sec at $\alpha=0^\circ$, $\beta=20^\circ$ (4) In case of no collision with an obstacle, the dynamic side overturn was stimu\ulcornerlated by the carrying load but in case of collision with an obstacle, the danger of the dynamic side overturn was decreased by the carrying load. (5) When the system travels downward with the first set of high speed the limit {)f slope angle of side sliding was $\beta=5^\circ-10^\circ$ and when travels upward with the first set of high speed, the limit of angle of side sliding was $\beta=10^\circ-17.4^\circ$ (6) In case of running downward with the first set of high speed and collision with an obstacle, the limit of slope angle of the dynamic side overturn was = $12^\circ-17^\circ$ and in case of running upward with the first set of high speed and collision <>f upper wheels with an obstacle, the limit of slope angle of dynamic side overturn collision of upper wheels against an obstacle was $\beta=22^\circ-33^\circ$ at $\alpha=0^\circ -17.4^\circ$, respectively. (7) In case of running up and downward with the first set of high speed and no collision with an obstacle, the limit of slope angle of dynamic side overturn was $\beta=30^\circ-35^\circ$ (8) When the power tiller without implement attached travels up and down on the general slope ground with first set of high speed, the limit of slope angle of dynamic side overturn was $\beta=32^\circ-39^\circ$ in case of no collision with an obstacle, and $\beta=11^\circ-22^\circ$ in case of collision with an obstacle, respectively.

  • PDF

A Simple and Fast Anti-collision Protocol for Large-scale RFID Tags Identification

  • Jia, Xiaolin;Feng, Yuhao;Gu, Yajun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권4호
    • /
    • pp.1460-1478
    • /
    • 2020
  • This paper proposes a novel anti-collision protocol for large-scale RFID tags identification, named Bi-response Collision Tree Protocol (BCT). In BCT, two group of tags answer the reader's same query in two response-cycles respectively and independently according to the bi-response pattern. BCT improves the RFID tag identification performance significantly by decreasing the query cycles and the bits transmitted by the reader and tags during the identification. Computation and simulation results indicate that BCT improves the RFID tag identification performance effectively, e.g. the tag identification speed is improved more than 13.0%, 16.9%, and 22.9% compared to that of Collision Tree Protocol (CT), M-ary Collision Tree Protocol (MCT), and Dual Prefix Probe Scheme (DPPS) respectively when tags IDs are distributed uniformly.

연료 제트의 두 액적간의 충돌기구에 관한 실험적 연구 (Experimental Investigation of Collision Mechanisms Between Binary Droplet of Fuel Jet)

  • 이근희;김사엽;이창식
    • 한국분무공학회지
    • /
    • 제13권4호
    • /
    • pp.187-192
    • /
    • 2008
  • In this study, the mechanisms of binary droplet collision were studied with diesel, ethanol and purified water. The droplet collisions of liquid droplet have been investigated for the same droplet diameter. In order to obtain the digital images of the droplet collision behavior, the experimental equipment was composed of the droplet generating system and the droplet visualization system. The droplets were produced by the vibrating orifice monodisperse generator. The visualization system consisted of a long distance microscope, a light source, and a high speed camera. The outcomes of binary droplet collision can be divided into four regimes, bouncing, coalescence, reflexive separation and stretching separation. The impact angle and the relative velocity of binary droplet are main parameters of collision phenomena, so the transition mechanism of droplet collision can be divided by the impact parameter.

  • PDF

국제해상충돌예방규칙을 고려한 확률적 속도 장애물 기반의 선박 충돌회피 알고리즘 (Automatic Ship Collision Avoidance Algorithm based on Probabilistic Velocity Obstacle with Consideration of COLREGs)

  • 조용훈;한정욱;김진환;이필엽
    • 대한조선학회논문집
    • /
    • 제56권1호
    • /
    • pp.75-81
    • /
    • 2019
  • This study presents an automatic collision avoidance algorithm for autonomous navigation of unmanned surface vessels. The performance of the collision avoidance algorithm is heavily dependent on the estimation quality of the course and speed of traffic ships because collision avoidance maneuvers should be determined based on the predicted motions of the traffic ships and their trajectory uncertainties. In this study, the collision avoidance algorithm is implemented based on the Probabilistic Velocity Obstacle (PVO) approach considering the maritime collision regulations (COLREGs). In order to demonstrate the performance of the proposed algorithm, an extensive set of simulations was conducted and the results are discussed.

차량의 개폐력 보조 여닫이 문의 되먹임 선형화를 이용한 속도 제어 및 충돌 감지 (Velocity Control and Collision Detection by Feedback Linearization for an Power-assisted Automotive Swing Door)

  • 이병수;박민규;성금길
    • 한국자동차공학회논문집
    • /
    • 제21권5호
    • /
    • pp.40-46
    • /
    • 2013
  • Automatic swing door for an automotive application is considered. The equation of motion for a driver side swing door is introduced and gravity cancellation control scheme is adapted. The control scheme supposed to cancel the moment due to the tilt of the car. A speed control is suggested for door operation automation but the output of the speed control is not suppose to be precise as for the manufacturing system control. In the frame of the velocity control of the door, feedback linearization was applied for collision detection. The collision detection performance is satisfactory. The estimate of the magnitude of disturbance due to the collision is close to the actual magnitude of disturbance. Simulation study has been performed to gain insight into the system behavior. Also real test on the prototype hardware has been performed for verification purpose.

A Study on Collision Avoidance Action in the Situation of Encountering Multiple Ships by the Reserve Officer

  • Park, Deuk-Jin;Yim, Jeong-Bin;Yang, Hyeong-Sun
    • 해양환경안전학회지
    • /
    • 제24권3호
    • /
    • pp.346-351
    • /
    • 2018
  • The proportion of collision in the total marine accidents is high. The main causes of collisions are navigation rule violation, safety speed violation, neglected watch-keeping and improper collision avoidance action. There are two main ways of avoiding collision situations during maritime navigation: the method of altering course and reducing ship's speed. The purpose of this study is to analyze the result of the collision avoidance action of the reserve officer in case of encountering a multiple number of ships using the ship handling simulator. Full-mission ship handling simulator was used to experiment the situation scenarios that encountered multiple ships. After the experiment, the questionnaire about the experiment was investigated. A total of 50 subjects were participated in the experiment. Experimental results showed that the number of the experimenters who used the engine was 11 and the number of the experimenters who did not use the engine was 39. In the case of using the engine, there were 0 collision accident, 1 grounding accident, and 10 no accidents. However, when the engine was not used, there were 28 collision accidents, 2 grounding accidents, and 9 no accidents. The causes of these results can be found in the survey results. 74 % of the non used engine participants said they were hesitate to use the engine. As can be seen from these results, the reserve officer are hesitant to use the engine and need a way to get correct of it. Maritime course subject can emphasize the importance of using ship's engines and case study also can be it. So, It is considered that various case study scenario will need to developed by various tools in the future.

선박충돌 문제에 대한 해상교량의 유지관리 (Maintenance of the Sea-crossing Bridge for Ship Collision Problems)

  • 배용귀;이성로
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제20권6호
    • /
    • pp.56-64
    • /
    • 2016
  • 해상교량의 선박충돌 문제는 기본적으로 선박의 충격력에 의한 부가 하중의 빈도를 추정하는 것이므로 특정한 수용 기준을 만족하도록 설계하는 것도 중요하지만 공용기간동안 이러한 충돌 위험의 증가분을 어떻게 유지관리 해야 하는지도 매우 중요하다. 본 논문에서는 인천대교를 대상으로 선박충돌 문제에 대한 중간점검을 위하여 관련 계획, 주경간장, 형하고 및 충돌 위험도를 검토하였다. 특히, 충돌 위험의 증가분에 대하여 근시적인 해결방안으로 관련 연구결과 및 운항관련 지침 등을 검토하여 최적화된 운항 속도를 8노트로 제시하였으며, 근본적인 해결방안으로 설계 단계에서 대상선박 및 통행량의 합리적인 예측을 위한 기본 절차를 수립하고 예측의 불확실성을 수용할 수 있는 확률론적 예측 기법을 제안하였다. 향후 선박충돌 관련 유지관리에 대한 추가적인 연구와 공용중인 다른 해상교량의 즉각적인 중간점검이 필요할 것으로 판단된다.