• Title/Summary/Keyword: Collision Model

Search Result 822, Processing Time 0.03 seconds

A Simulation Technique for the Performance Evaluation of the Multi-Robot Inter connection Systems(MRIS) (다중로봇의 성능평가를 위한 시뮬레이션 기법)

  • 이기동;이범희
    • The Magazine of the IEIE
    • /
    • v.22 no.8
    • /
    • pp.33-43
    • /
    • 1995
  • 생산시스템 분야에서의 다중로봇시스템에 대한 필요성이 증가되고 있기 때문에, 이에 대한 시스템 성능분석이 우선적으로 필요하다. 본 논문에서는 다중로봇시스템의 성능평가를 위한 컴퓨터 시뮬레이션 방법을 제시한다. 먼저 오류회복 기능만을 고려한 다중로봇시스템에 대하여 여러 가지의 모델링 방법 중에서 확장 페트리 네트 모델을 기초로 하여 컴퓨터 시뮬레이션 하는 과정을 제시하고 제시된 시뮬레이션 방법의 유효성을 입증하기 위하여 부가적으로 큐잉모델을 기초로 한 해석적 수식을 유도하여 두 가지의 결과를 비교해 본다. 그 다음, 오류회복 기능에 덧붙여서 충돌회피 기능을 고려한 다중로봇시스템은 해석적 수식을 유도하기 위해서는 강력한 가정들이 필요하며 이러한 가정들 때문에 실제 시스템을 정확히 모델에 반영하기 어려워진다. 따라서, 그 유효성이 입증된 컴퓨터 시뮬레이션을 이용하면 필요한 최적의 운용 변수를 용이하게 선택할 수 있을 것이다. Since there are Increasing demands for multirobot interconnection systems(MRIS) in Industrial manufacturing system, the performance evaluation of the MRIS is first needed. This thesis presents a computer simulation technique for the performance evaluation of the MRIS. First, we consider a error recoverable MRIS. We adopt the extended Petri net model as a computer simulation model that allows an easy evaluation of the performance. To verify the significance of the proposed computer simulation method, mathematical analysis, which is based on the given queueing model, is carried out with some design issues for the MRIS. In addition to this, it is required to analyze the MRIS considering collision avoidance as well as error recovery. In this case, methematial analysis needs hard assumptions which are the constraints for the precise description of real environment. Thus, we present a computer simulation model and its results suggest an optimal operational strategy for the MRIS under given conditions.

  • PDF

Merging of Satellite Remote Sensing and Environmental Stress Model for Ensuring Marine Safety (해상안전을 확보하기 위한 인공위성 리모트센싱과 환경부하모델의 접목)

  • 양찬수;박영수
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2003.05a
    • /
    • pp.192-197
    • /
    • 2003
  • A virtual vessel traffic control system is introduced to contribute to prevent a marine accident, e.g. ship collision or stranding. from happening. The system that comes from VTS limitaions, consists of both data acquisition by satellite remote sensing and a simulation of traffic environment stress (here, INOUE model used) based on the satellite data. Remotely sensed data cab be used to provide timely and detailed information about the marine safety, including the location, speed and direction of ships, and help us operate vessels safely and efficiently. If in the future, e.g. 5-minute after, environmental stress values that a ship may encounter on a voyage can be available, proper actions can be taken to prevent accidents. It lastly can be shown that JERS satellite data are used to track ships and extract their information.

  • PDF

A Virtual Sculpting System using Haptic Interface (햅틱 인터페이스를 이용한 가상 조각 시스템)

  • Kim Laehyun;Park Sehyung
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.12
    • /
    • pp.682-691
    • /
    • 2004
  • We present a novel haptic sculpting system where the user intuitively adds to and carves out material from a volumetric model using new sculpting tools in the similar way to handling real clay Haptic rendering and model deformation are implemented based on volumetric implicit surface. We enhance previous volume-based haptic sculpting systems by presenting fast and stable force computation on 3D models to be deformed. In order to bridge the gap between fast haptic process (1 KHz) and much slower visual update frequency(~30Hz), the system generates intermediate implicit surfaces between two consecutive physical models being deformed. It performs collision detection and force computation on the intermediate surface in haptic process. The volumetric model being sculpted is visualized as a geometric model which is adaptively polygonized according to the surface complexity. We also introduce various visual effects for the real-time sculpting system including mesh-based solid texturing, painting, and embossing/engraving techniques.

Performance Evaluation of a Fat-tree Network with Output-Buffered $a{\times}b$ Switches (출력 버퍼형 $a{\times}b$스위치로 구성된 Fat-tree 망의 성능 분석)

  • 신태지;양명국
    • Journal of KIISE:Information Networking
    • /
    • v.30 no.4
    • /
    • pp.520-534
    • /
    • 2003
  • In this paper, a performance evaluation model of the Fat-tree Network with the multiple-buffered crossbar switches is proposed and examined. Buffered switch technique is well known to solve the data collision problem of the switch network. The proposed evaluation model is developed by investigating the transfer patterns of data packets in a switch with output-buffers. Two important parameters of the network performance, throughput and delay, are then evaluated. The proposed model takes simple and primitive switch networks, i.e., no flow control and drop packet, to demonstrate analysis procedures clearly. It, however, can not only be applied to any other complicate modern switch networks that have intelligent flow control but also estimate the performance of any size networks with multiple-buffered switches. To validate the proposed analysis model, the simulation is carried out on the various sizes of Fat-tree networks that uses the multiple buffered crossbar switches. Less than 2% differences between analysis and simulation results are observed.

Effect of earthquake induced-pounding on the response of four adjacent buildings in series

  • Elwardany, Hytham;Mosa, Beshoy;Khedr, M. Diaa Eldin;Seleemah, Ayman
    • Structural Engineering and Mechanics
    • /
    • v.83 no.2
    • /
    • pp.153-166
    • /
    • 2022
  • Structural pounding due to strong seismic excitations can result in severe damage or even collapse of colliding structures. Many researchers focused on studying the mutual pounding between two adjacent structures while very few researches were concerned with the pounding of a series of structures. This paper aims to study the pounding effect on a series of four buildings having different natural frequencies. The paper also investigates the effect of different arrangements of the four buildings on their pounding response. For this, a mathematical model was constructed using Matlab code where, pounding was modeled using a contact force-based approach. A Non-Linear viscoelastic (Hertzdamp) contact element was used and activated only during the approach period of collision. The mathematical model was validated by comparing its prediction versus experimental results on three adjacent buildings. Then the model was used to study the pounding between four adjacent structures arranged in different sequences according to their natural frequencies. The results revealed that increasing the gap distance generally led to decrease the peak responses of the towers. Such response is somehow different from that predicted earlier by the authors for the case of three adjacent buildings. Moreover, the arrangement of towers has a significant effect on their pounding response. Significant difference between the natural frequencies of adjacent structures increases the pounding forces especially when the more flexible buildings are located at the outer edge of the series. The study points out the need for further researches on buildings in series to gain a better understanding of such complex phenomena.

Study on Vessel Traffic Risk Assessment according to Waterway Patterns in a Southwest Offshore Wind Farm (서남해 해상풍력발전단지 내 항로형태에 따른 선박통항 위험도 평가에 관한 연구)

  • Jang, Da-Un;Kim, Deug-Bong;Jeong, Jae-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.6
    • /
    • pp.635-641
    • /
    • 2019
  • Domestic southwest offshore wind farms have problems such as the reduction in fishing rights by prohibiting vessel traffic, which delays their development. As such, there is a need to develop offshore windfarms in Europe to permit the passage of vessels and fishing operations in specific offshore windfarm areas. In this study, we used the environmental stress (ES model) and the IALA Waterway Risk Assessment Program (IWRAP) to determine the ratio of risk to the route type (cross pattern, grid pattern) and traffic volume (present, 3 times, 5 times and 10 times) to derive the risk factors of specific vessels for offshore windfarms. As a result, ship operators' risk related to offshore windfarms did not rise in both route types and there was no significant difference in the annual probability of collision in the present traffic volume. In conditions that increased traffic volume by 3 times, 5 times and 10 times, the risk ratio increased as ship operator risk and collision probability increased at the crossing points. Furthermore, when the traffic volume of the ship increased, the risk could be more effectively distributed in the grid route compared to the cross route. The results of this study are expected to apply to the operation type, route operation method, safety measures, etc. in offshore wind farms.

Multi-Channel Pipelining for Energy Efficiency and Delay Reduction in Wireless Sensor Network (무선 센서 네트워크에서 에너지 효율성과 지연 감소를 위한 다중 채널 파리프라인 기법)

  • Lee, Yoh-Han;Kim, Daeyoung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.11
    • /
    • pp.11-18
    • /
    • 2014
  • Most of the energy efficient MAC protocols for wireless sensor networks (WSNs) are based on duty cycling in a single channel and show competitive performances in a small number of traffic flows; however, under concurrent multiple flows, they result in significant performance degradation due to contention and collision. We propose a multi-channel pipelining (MCP) method for convergecast WSN in order to address these problems. In MCP, a staggered dynamic phase shift (SDPS) algorithms devised to minimize end-to-end latency by dynamically staggering wake-up schedule of nodes on a multi-hop path. Also, a phase-locking identification (PLI) algorithm is proposed to optimize energy efficiency. Based on these algorithms, multiple flows can be dynamically pipelined in one of multiple channels and successively handled by sink switched to each channel. We present an analytical model to compute the duty cycle and the latency of MCP and validate the model by simulation. Simulation evaluation shows that our proposal is superior to existing protocols: X-MAC and DPS-MAC in terms of duty cycle, end-to-end latency, delivery ratio, and aggregate throughput.

Spatiotemporal Analysis of Ship Floating Object Accidents (선박 부유물 감김사고의 시·공간적 분석)

  • Yoo, Sang-Lok;Kim, Deug-Bong;Jang, Da-Un
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.1004-1010
    • /
    • 2021
  • Ship-floating object accidents can lead not only to a delay in ship's operations, but also to large scale casualties. Hence, preventive measures are required to avoid them. This study analyzed the spatiotemporal aspects of such collisions based on the data on ship-floating object accidents in sea areas in the last five years, including the collisions in South Korea's territorial seas and exclusive economic zones. We also provide basic data for related research fields. To understand the distribution of the relative density of accidents involving floating objects, the sea area under analysis was visualized as a grid and a two-dimensional histogram was generated. A multinomial logistic regression model was used to analyze the effect of variables such as time of day and season on the collisions. The spatial analysis revealed that the collision density was highest for the areas extending from Geoje Island to Tongyeong, including Jinhae Bay, and that it was high near Jeongok Port in the West Sea and the northern part of Jeju Island. The temporal analysis revealed that the collisions occurred most frequently during the day (71.4%) and in autumn. Furthermore, the likelihood of collision with floating objects was much higher for professional fishing vessels, leisure vessels, and recreational fishing vessels than for cargo vessels during the day and in autumn. The results of this analysis can be used as primary data for the arrangement of Coast Guard vessels, rigid enforcement of regulations, removal of floating objects, and preparation of countermeasures involving preliminary removal of floating objects to prevent accidents by time and season.

Development of the Risk Evaluation Model for Rear End Collision on the Basis of Microscopic Driving Behaviors (미시적 주행행태를 반영한 후미추돌위험 평가모형 개발)

  • Chung, Sung-Bong;Song, Ki-Han;Park, Chang-Ho;Chon, Kyung-Soo;Kho, Seung-Young
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.6
    • /
    • pp.133-144
    • /
    • 2004
  • A model and a measure which can evaluate the risk of rear end collision are developed. Most traffic accidents involve multiple causes such as the human factor, the vehicle factor, and the highway element at any given time. Thus, these factors should be considered in analyzing the risk of an accident and in developing safety models. Although most risky situations and accidents on the roads result from the poor response of a driver to various stimuli, many researchers have modeled the risk or accident by analyzing only the stimuli without considering the response of a driver. Hence, the reliabilities of those models turned out to be low. Thus in developing the model behaviors of a driver, such as reaction time and deceleration rate, are considered. In the past, most studies tried to analyze the relationships between a risk and an accident directly but they, due to the difficulty of finding out the directional relationships between these factors, developed a model by considering these factors, developed a model by considering indirect factors such as volume, speed, etc. However, if the relationships between risk and accidents are looked into in detail, it can be seen that they are linked by the behaviors of a driver, and depending on drivers the risk as it is on the road-vehicle system may be ignored or call drivers' attention. Therefore, an accident depends on how a driver handles risk, so that the more related risk to and accident occurrence is not the risk itself but the risk responded by a driver. Thus, in this study, the behaviors of a driver are considered in the model and to reflect these behaviors three concepts related to accidents are introduced. And safe stopping distance and accident occurrence probability were used for better understanding and for more reliable modeling of the risk. The index which can represent the risk is also developed based on measures used in evaluating noise level, and for the risk comparison between various situations, the equivalent risk level, considering the intensity and duration time, is developed by means of the weighted average. Validation is performed with field surveys on the expressway of Seoul, and the test vehicle was made to collect the traffic flow data, such as deceleration rate, speed and spacing. Based on this data, the risk by section, lane and traffic flow conditions are evaluated and compared with the accident data and traffic conditions. The evaluated risk level corresponds closely to the patterns of actual traffic conditions and counts of accident. The model and the method developed in this study can be applied to various fields, such as safety test of traffic flow, establishment of operation & management strategy for reliable traffic flow, and the safety test for the control algorithm in the advanced safety vehicles and many others.

A Development of Semi-automatic Trawl-net Surfaces Reconstruction System using Motion Equations and User Interactions (운동 방정식과 사용자 상호작용을 적용한 반자동 트롤 그물 표면 재구축 시스템 개발)

  • Yoon, Joseph;Park, Keon-Kuk;Kwon, Oh-Seok;Kim, Young-Bong
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.8
    • /
    • pp.1447-1455
    • /
    • 2017
  • In a trawl-net simulation, it is very important to process the physical phenomenons resulting from real collisions between a net and fishes. However, because it is very difficult to reconstruct the surface with mass points, many researchers have generally detect the collision using an approximation model employing a sphere, a cube or a cylinder. These approaches occur often result in inaccurate movements of a fish due to the difference between a real-net and a designed-net. So, many systems have manually adjusted a net surface based on actual measurements of mass points. These methods are very inefficient because it needs much times in an adjustment and also causes more incorrect inputs according to a rapid increment in the number of points. Therefore, in this paper, we propose a reconstruction method that it semi-automatically reconstructed trawl-net surfaces using the equation of motion at each mass point in a mass-spring model. To get an easy start in a beginning step of the spread, it enables users to get interactive adjustment on each mass point. We had designed a trawl-net model using geometrical structures of trawl-net and then automatically reconstructed the trawl-net surface using scale-space meshing techniques. Last, we improve the accuracy of reconstructed result by correction user interaction.