• 제목/요약/키워드: Collision Free

검색결과 293건 처리시간 0.028초

Energy-efficient Low-delay TDMA Scheduling Algorithm for Industrial Wireless Mesh Networks

  • Zuo, Yun;Ling, Zhihao;Liu, Luming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제6권10호
    • /
    • pp.2509-2528
    • /
    • 2012
  • Time division multiple access (TDMA) is a widely used media access control (MAC) technique that can provide collision-free and reliable communications, save energy and bound the delay of packets. In TDMA, energy saving is usually achieved by switching the nodes' radio off when such nodes are not engaged. However, the frequent switching of the radio's state not only wastes energy, but also increases end-to-end delay. To achieve high energy efficiency and low delay, as well as to further minimize the number of time slots, a multi-objective TDMA scheduling problem for industrial wireless mesh networks is presented. A hybrid algorithm that combines genetic algorithm (GA) and simulated annealing (SA) algorithm is then proposed to solve the TDMA scheduling problem effectively. A number of critical techniques are also adopted to reduce energy consumption and to shorten end-to-end delay further. Simulation results with different kinds of networks demonstrate that the proposed algorithm outperforms traditional scheduling algorithms in terms of addressing the problems of energy consumption and end-to-end delay, thus satisfying the demands of industrial wireless mesh networks.

Optimal Fuzzy Sliding-Mode Control for Microcontroller-based Microfluidic Manipulation in Biochip System

  • Chung, Yung-Chiang;Wen, Bor-Jiunn
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.196-201
    • /
    • 2004
  • In biometric and biomedical applications, a special transporting mechanism must be designed for the ${\mu}$TAS (micro total analysis system) to move samples and reagents through the microchannels that connect the unit procedure components in the system. An important issue for this miniaturization and integration is microfluid management technique, i.e., microfluid transportation, metering, and mixing. In view of this, this study presents an optimal fuzzy sliding-mode control (OFSMC) design based on the 8051 microprocessor and implementation of a complete microfluidic manipulated system implementation of biochip system with a pneumatic pumping actuator, a feedback-signal photodiodes and flowmeter. The new microfluid management technique successfully improved the efficiency of molecular biology reaction by increasing the velocity of the target nucleic acid molecules, which increases the effective collision into the probe molecules as the target molecules flow back and forth. Therefore, this hybridization chip was able to increase hybridization signal 6-fold and reduce non-specific target-probe binding and background noises within 30 minutes, as compared to conventional hybridization methods, which may take from 4 hours to overnight. In addition, the new technique was also used in DNA extraction. When serum existed in the fluid, the extraction efficiency of immobilized beads with solution flowing back and forth was 88-fold higher than that of free-beads.

  • PDF

Strawberry Harvesting Robot for Bench-type Cultivation

  • Han, Kil-Su;Kim, Si-Chan;Lee, Young-Bum;Kim, Sang-Chul;Im, Dong-Hyuk;Choi, Hong-Ki;Hwang, Heon
    • Journal of Biosystems Engineering
    • /
    • 제37권1호
    • /
    • pp.65-74
    • /
    • 2012
  • Purpose: An autonomous robot was developed for harvesting strawberries cultivated in bench-type systems. Methods: The harvest robot consisted of four main components: an autonomous vehicle, a manipulator with four degrees of freedom (DOF), an end effector with two DOFs, and a color computer vision system. Strawberry detection was performed based on 3D image and distance information obtained from a stereo CCD color camera and a laser device, respectively. Results: In this work, a Cartesian type manipulator system was designed, including an intermediate revolute axis and a double driven arm-based joint axis, so that it could generate collision-free motions during harvesting. A DC servomotor-driven end-effector, consisting of a gripper and a cutter, was designed for gripping and cutting the strawberry stem without damaging the strawberry itself. Real-time position tracking algorithms were developed to detect, recognize, trace, and approach strawberries under natural light conditions. Conclusion: The developed robot system could harvest a strawberry within 7 seconds without damage.

천장설치형 카메라 시스템을 사용한 장애물 회피용 이동 로봇의 경로설계법과 그 구현 (Path Design Method of Mobile Robot for Obstacle Avoidance Using Ceiling- mounted Camera System and Its Implementation)

  • 트란안킴;김광주;중탄람;김학경;김상봉
    • 한국정밀공학회지
    • /
    • 제21권8호
    • /
    • pp.73-82
    • /
    • 2004
  • In this paper, implementation of obstacle avoidance of a nonholonomic mobile robot in unstructured environment is introduced. To avoid obstacles, first, a reference collision-free path for the MR is generated off-line using HJB-based optimal path planning method. A controller is designed using integrator backstepping method for tracking the generated reference path. To implement the designed controller, a control system are needed and composed of camera system and PIC-based controller. The workspace is observed by a ceiling-mounted USB camera as part of an un-calibrated camera system. Thus the positional information of the MR is updated frequently and the MR can get the useful inputs for its tracking controller. The whole control system is realized by integrating a computer with PIC-based microprocessor using wireless communication: the image processing control module and path planning module serve as high level computer control while the device control serves as low level PIC microprocessor control. The simulation and experimental results show the effectiveness of the designed control system.

Reducing the Search Space for Pathfinding in Navigation Meshes by Using Visibility Tests

  • Kim, Hyun-Gil;Yu, Kyeon-Ah;Kim, Jun-Tae
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권6호
    • /
    • pp.867-873
    • /
    • 2011
  • A navigation mesh (NavMesh) is a suitable tool for the representation of a three-dimensional game world. A NavMesh consists of convex polygons covering free space, so the path can be found reliably without detecting collision with obstacles. The main disadvantage of a NavMesh is the huge state space. When the $A^*$ algorithm is applied to polygonal meshes for detailed terrain representation, the pathfinding can be inefficient due to the many states to be searched. In this paper, we propose a method to reduce the number of states searched by using visibility tests to achieve fast searching even on a detailed terrain with a large number of polygons. Our algorithm finds the visible vertices of the obstacles from the critical states and uses the heuristic function of $A^*$, defined as the distance to the goal through such visible vertices. The results show that the number of searched states can be substantially reduced compared to the $A^*$ search with a straight-line distance heuristic.

스테레오 비전을 이용한 실시간 인간형 로봇 궤적 추출 및 네비게이션 (Real-time Humanoid Robot Trajectory Estimation and Navigation with Stereo Vision)

  • 박지환;조성호
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제37권8호
    • /
    • pp.641-646
    • /
    • 2010
  • 스테레오 카메라를 갖춘 인간형 로봇이 자율적으로 주변 상황을 인지하면서 목적지까지의 경로를 실시간으로 생성 및 수정하는 간단한 알고리즘을 제시한다. 특징점들을 시각적 이미지에서 추출함으로써 주위의 장애물들을 인지한다. 인간형 로봇의 뒤뚱거리는 보행 움직임을 모델링함으로써 로봇의 중심부 기준에서의 실제 경로를 유추하여 계획된 경로와 비교함으로써 시각적 피드백 제어를 구현하고 성공적인 네비게이션을 수행한다. 실제 인간형 로봇의 네비게이션 실험을 통해 제안된 알고리즘의 가능성을 입증한다.

분자간 포텐셜과 나노계 상태와의 상관관계 (Correlation between an Intermolecular Potential and the State of a Nanoscale System)

  • 최순호;정한식;정효민;임민종;최경민;김덕줄
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.496-501
    • /
    • 2007
  • Recently, as MEMS and NEMS devices have been widely used in the various engineering applications, the characteristics of nanoscale systems are investigated in the limelight. However, as opposed to a macroscale system, the identification of the state of nanoscale systems is extremely hard because they can include only the order of $10^{3}\sim10^{5}$ molecules, which requires highly expensive and accurate experimental apparatus for an investigation. This limitations make the study on nanoscale system use computer simulations. Therefore, it is strongly required to identify the state of nanoscale system simulated in computer simulation. In these molecular dynamics(MD) study, we suggest that the potential energy of individual molecule can be used as criterion for defining the state of clusters or nanoscale systems. In addition, we compared the phase state from the potential energy with one from the radial distribution function(RDF) for verification. The comparison showed that the intermolecular potential energy can be used as a criteria distinguishing the phase state of nanoscale systems (This study will be published soon in the KSME transaction of the section B).

  • PDF

광통신망 구축의 효과적인 설계 및 MAC고려 요소 (The Efficiency Design & MAC Function of the Composition Optical Network)

  • 하창국
    • 기술사
    • /
    • 제34권4호
    • /
    • pp.41-47
    • /
    • 2001
  • The paper describes SR3 (Synchronous Round Robin with Reservations), a collision-free medium access control protocol for all-optical slotted packet networks based on WDM multi-channel ring topologies where nodes are equipped with one fixed-wavelength receiver and one wavelength-tunable transmitter SR3 is derived from the SRR and MMR protocols previously proposed by the same authors for the same class of all-optical networks. SRR and MMR already achieve an efficient exploitation of the available bandwidth, while guaranteeing a throughput-fair access to each node. SR3, In addition, allows nodes to reserve slots. thereby achieving a stronger control on access delays; it is thus well suited to meet tight delay requirements, as it is the case for multimedia applications. Simulation results show that SR3 provides very good performance to guaranteed qualify traffic, but also brings signigicant performance improvements for best-effort traffic. Energy effciency is an important issue for optical network since they must rely on their batteries. We present a novel MAC protocol that achieves a good energy efficiency of optical interface of the network and provides support for diverse traffic types and QoS. The scheduler of the base station is responsible to provide the required QoS to connections on the optical link and to minimise the amount of energy spend by the High speed Network. The main principles of the MaC protocol are to avoid unsuccessful actions, minimise the number of transitions , and synchronise the mobile and the base-station. We will show that considerable amounts of energy can be saved using these principles.

  • PDF

IEEE802.15.4e TSCH의 소비전력에 대한 성능평가 (Performance Evaluation on the Power Consumption of IEEE802.15.4e TSCH)

  • 김동원;윤미희
    • 한국인터넷방송통신학회논문지
    • /
    • 제18권1호
    • /
    • pp.37-41
    • /
    • 2018
  • 본 논문에서는 참고문헌[1] 논문에서 제안한 고유의 링크 스케줄링 방법이 적용된 IEEE802.15.4e TSCH (Time-Slotted Channel Hopping)의 전력 소비 측면에서 절감 능력을 기존 단일채널 IEEE802.15.4와 비교하여 분석한다. TSCH 방식이 기존 방식에 비해 어떤 트래픽 조건하에서도 전력소모가 적게 하는 것으로 나타난다. 그 이유는 첫째, 충돌이 발생하지 않는 스케줄링 방식으로 인해 백오프 시간이 없다는 점과 둘째, MAC 오프셋 시간변수들의 차이로 인한 것으로 판단된다. 마지막으로 TSCH에서는 디바이스들은 자신의 스케줄이 아닌 타임 슬롯 동안은 sleep을 통해 전력 소모를 줄일 수 있음을 볼 수 있다.

IEEE 802.11 무선 랜의 성능 향상을 위한 새로운 MAC프로토콜 (A new MAC protocol to improve a performance in IEEE 802.11 wireless LANs)

  • 황경호
    • 한국정보통신학회논문지
    • /
    • 제13권4호
    • /
    • pp.759-764
    • /
    • 2009
  • 본 논문에서는 IEEE 802.11 무선 랜의 인프라스트럭쳐 모드에서 성능을 향상시키기 위한 새로운 매체 접근 제어(MAC) 프로토콜을 제안한다. 각 단말은 beacon으로부터 전송되는 파라미터와 접속 연결 시에 AP로부터 부여받은 자신의 고유한 ID를 사용하여 단말들 내에서 유일한 백오프 값을 생성하여, 데이터 전송 시에 해당 백오프 값만큼의 유휴 슬롯을 보낸 후 데이터를 전송한다. 제안한 백오프 방식을 따를 경우 단말들 간의 충돌 없는 접속이 가능하며, 시뮬레이션을 통해 성능분석을 한 결과, 기존의 IEEE 802.11 프로토콜의 CSMA/CA 표준 방식과 비교해서 채널 이용률이 늘어나고 패킷 지연이 감소함을 볼 수 있었다.