• Title/Summary/Keyword: Collision Avoidance Path

Search Result 173, Processing Time 0.032 seconds

2D Map-Based Navigation in 3D Virtual Environment (2차원 Map 기반 3차원 가상공간 Navigation)

  • Gwon, Tae-Uk;Choe, Yun-Cheol
    • Journal of KIISE:Software and Applications
    • /
    • v.28 no.4
    • /
    • pp.327-337
    • /
    • 2001
  • 이 논문에서 제시된 2D Map-Based Navigation (MBN)은 다중 사용자 환경의 가상공간을 이동할 때, 실세계와 유사한 이동방법을 제공하여 사용자로 하여금 가상공간에 대한 현장감 및 현실감의 제고에 초점을 두었다. MBN은 사용자들이 가상공간에서 발생하기 쉬운 spatial loss를 방지하고, 이동 시 부가적인 입력이 없이도 일정한 속도로 이동을 지원하는 Automatic Constant-velocity Navigation, 이동중 장애물 및 다른 사용자(아바타)와의 충돌현상을 감지 및 회피하는 Collision Detection and Avoidance, 그리고 충돌회피 후 기존 방향으로의 계속된 이동을 지원하는 Path Adjustment 등의 기능을 제공한다. MBN은 spatial loss의 방지, 사용자의 부가적인 노력의 감소 및 병행작업의 보장, 현실과 유사한 사용자 중심의 navigation 기법의 제공, 그리고 가상공간과 현실과의 괴리를 줄임으로써 가상현실이 추구하는 현실감 및 현장감을 높일 수 있도록 하였다. 실험을 통하여 본 연구에서 제안한 MBN이 사용자 중심의 매우 자연스럽소, 쉽고 편리한 가상공간 navigation 인터페이사라는 평가를 얻었다.

  • PDF

Routing of Linear Motor based Shuttle Cars in the Agile Port Terminal with Constrained Dynamic Programming

  • Cho, Hyun-Cheol;Lee, Jin-Woo;Lee, Young-Jin;Lee, Kwon-Soon
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.2
    • /
    • pp.278-281
    • /
    • 2008
  • Linear motor (LM) based shuttle cars will play an important role in the future transportation systems of marine terminals to cope with increasing container flows. These systems are known as agile port terminals because of their significant advantages. However, routing for multiple shuttle cars is still an open issue. We present a network model of a container yard and propose constrained dynamic programming (DP) for its routing strategy with collision avoidance. The algorithm is a modified version of typical DP which is used to find an optimal path for a single traveler. We evaluate the new algorithm through simulation results for three shuttle cars in a mesh-type container yard.

Dynamic Routing and Scheduling of Multiple AGV System (다중 무인운반차량 시스템에서의 동적 라우팅과 스케줄링)

  • 이상훈
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1999.10a
    • /
    • pp.100-107
    • /
    • 1999
  • 무인 운반차량 시스템 (AGV System) 의 이용도가 날로 증가함에 따라 시스템의 최적화 및 운영 방법에 관한 많은 연구가 진행되고 있다. 이에 본 연구에서는 AGV System에서 사용하는 Routing 및 Scheduling 정책들을 연구하고 이를 개선할 수 있는 새로운 방안을 모색한 후, 컴퓨터 모델링 기법을 이용한 보다 객관적인 시뮬레이션을 수행하여 최적의 AGV System과 그에 적합한 운영 정책을 제시하는데 그 목적이 있다. 따라서 본 논문은 크게 AGV Routing 과 Scheduling에 관한 연구로 나누어진다. AGV Routing은 AGV의 이동경로를 설정하는 것으로서 충돌 방지 (Collision Avoidance)와 최단경로 탐색 (Minimal Cost Path Find) 이라는 두 개의 주요 알고리즘으로 이루어진다. AGV Scheduling 은 장비의 공정시간과 AGV의 Loading/Unloading, Charging 시간으로 인해 불규칙한 Event 가 일어났을 경우 AGV 각각의 Jop을 알맞게 선정해주는 정책을 말하며 일반적으로 AGV Selection Rule, Charging Rule이 여기에 속한다. 본 연구에서는 이러한 알고리즘들이 반영된 AGV System을 컴퓨터 모델로 구축하여, 기존 시스템에서 사용되고 있는 여러 운영 정책들의 문제점들을 분석하였으며, Multiple AGV System을 최적화 시키는 운영 정책이 보다 객관적으로 제시되었다.

  • PDF

Cutting Motion Simulator for Nutating Head Type S-axis CNC Laser Cutting Machine (Nutating 헤드 타입 5축 CNC 레이저 절단기용 동작 시뮬레이터)

  • Kang, Jae-Gwan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.34 no.3
    • /
    • pp.35-40
    • /
    • 2011
  • 5-axis laser cutting has great advantages when it is applied to three dimensional machining requiring high cutting quality. For developing 5-axis CNC laser cutting systems, however, many problems such as rotating a laser head or a working table, 5-axis servo-control mechanism, tool path generation and post-processing, and collision avoidance between a laser head and a work-piece should be solved. In this paper, we deal with developing a motion simulator for 5-axis laser cutting machine with a nutating cutting head whose rotational axis is in an inclined plane. Two essential modules such as post-processor and cutting motion simulator was developed based on a commercial 3D CAD of UG-NX. The developed system was applied to three dimensional cutting products and showed the validity of the developed methods.

A study on the AGV path determination and collision avoidance for multiple environment (다중 작업환경의 AGV 경로 선정과 충돌 회피에 관한 연구)

  • Kim, Jong-Seon;Yu, Yeong-Seon;Kim, Se-Jin;Joo, Young-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1773-1774
    • /
    • 2007
  • 본 논문은 AGVS(Automated Guide Vehicle System)가 여러 작업환경 및 변경 시 좀더 유연하게 대응할 수 있도록 작업환경 내에서 AGVS에 필요한 작업공간요소로 분류하고 이들을 모델링하는 방법을 제안하였다. 또한, 최단경로 생성 시 $A^*$ 알고리즘에서의 평가함수 선정 방법과 최단경로 상에 존재하는 경로의 충돌 모델을 제안하였으며 시뮬레이션을 통해 제안한 방법을 증명하였다.

  • PDF

Dynamic Routing and Scheduling of Multiple AGV System (다중 무인운반차량 시스템에서의 동적 라우팅과 스케줄링)

  • 전동훈
    • Journal of the Korea Society for Simulation
    • /
    • v.8 no.3
    • /
    • pp.67-76
    • /
    • 1999
  • The study of the optimization of operating policy of AGV system, which is used in many factory automation environments has been proceeded by many researchers. The major operating policy of AGV system consists of routing and scheduling policy. AGV routing is composed with collision avoidance and minimal cost path find algorithm. To allocate jobs to the AGV system, AGV scheduling has to include AGV selection rules, parking rules, and recharging rules. Also in these rules, the key time parameters such as processing time of the device, loading/unloading time and charging time should be considered. In this research, we compare and analyze several operating policies of multiple loop-multiple AGV system by making a computer model and simulating it to present an appropriate operating policy.

  • PDF

A Study on the Pseudoinverse Kinematic Motion Control of 6-Axis Arc Welding Robot (6축 아크 용접 로보트의 의사 역기구학적 동작 제어에 관한 연구)

  • Choi, Jin-Seob;Kim, Dong-Won;Yang, Sung-Mo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.2
    • /
    • pp.170-177
    • /
    • 1993
  • In robotic arc welding, the roll (rotation) of the torch about its direction vector does not have any effect on the welding operation. Thus we could use this redundant degree of greedom for the motion control of the robot manipulator. This paper presents an algorithm for the pseudo- inverse kinematic motion control of the 6-axis robot, which utilizes the above mentioned redunancy. The prototype welding operation and the tool path are also graphically simulated. Since the proposed algorithm requires only the position and normal vector of the weldine as an input data, it is useful for the CAD-based off-line programming of the arc welding robot. In addition, it also has the advantages of the redundant manipulator motion control, like singularity avoidance and collision free motion planning, when compared with the other motion control method based on the direct inverse kinematics.

  • PDF

Design of Decentralized Guidance Algorithm for Swarm Flight of Fixed-Wing Unmanned Aerial Vehicles (고정익 소형무인기 군집비행을 위한 분산형 유도 알고리듬 설계)

  • Jeong, Junho;Myung, Hyunsam;Kim, Dowan;Lim, Heungsik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.12
    • /
    • pp.981-988
    • /
    • 2021
  • This paper presents a decentralized guidance algorithm for swarm flight of fixed-wing UAVs (Unmanned Aerial Vehicles). Considering swarm flight missions, we assume four representative swarm tasks: gathering, loitering, waypoint/path following, and individual task. Those tasks require several distinct maneuvers such as path following, flocking, and collision avoidance. In order to deal with the required maneuvers, this paper proposes an integrated guidance algorithm based on vector field, augmented Cucker-Smale model, and potential field methods. Integrated guidance command is synthesized with heuristic weights designed for each guidance method. The proposed algorithm is verified through flight tests using up to 19 small fixed-wing UAVs.

Fuzzy Control for the Obstacle Avoidance of Remote Control Mobile Robot (원격제어 이동로봇의 장애물 회피를 위한 퍼지 제어)

  • Yeo, Hee-Joo;Sung, Mun-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.1
    • /
    • pp.47-54
    • /
    • 2011
  • The remote control mobile robot is the robot accomplishing a task according to the orders giving by a user through departed communication system using a joystick. Basically, to supply a lot of information, as this type of robot uses visual information, the user can check the transmitted information by eyes and give orders to the robot. But the weak point of this type of robot is that it has a possibility to come into a collision with an obstacle not be seen to the user because of the communication delay occurring in a communication system and dead zone happening in visual information. To solve the problem, in this paper, we try to suggest a system applying a fuzzy control system to the robot to avoid collision with an obstacle by an immediate order of the user. The fuzzy control system has better performance than any other existing control methods in the change of noise and parameter. And it is more efficient than any other since it solves easy the complexity of the system analysis occurring because of the nonlinear feature of the mobile robot system. In this paper, we made experiments how the mobile robot controlled by the fuzzy control system avoids an obstacle, tracks the path and avoids the obstacle in the path, to prove the performance and to check the evaluation and the application possibility of the fuzzy control system.

Collision Avoidance and Deadlock Resolution for AGVs in an Automated Container Terminal (자동화 컨테이너 터미널에서의 AGV 충돌 방지 및 교착 해결 방안)

  • Kang, Jae-Ho;Choi, Lee;Kang, Byoung-Ho;Ryu, Kwang-Ryel;Kim, Kap-Hwan
    • Journal of Intelligence and Information Systems
    • /
    • v.11 no.3
    • /
    • pp.25-43
    • /
    • 2005
  • In modern automated container terminals, automated guided vehicle (AGV) systems are considered a viable option for the horizontal tansportation of containers between the stacking yard and the quayside cranes. AGVs in a container terminal move rather freely and do not follow fixed guide paths. For an efficient operation of such AGVs, however, a sophisticated traffic management system is required. Although the flexible routing scheme allows us to find the shortest possible routes for each of the AGVs, it may incur many coincidental encounters and path intersections of the AGVs, leading to collisions or deadlocks. However, the computational cost of perfect prediction and avoidance of deadlocks is prohibitively expensive for a real time application. In this paper, we propose a traffic control method that predicts and avoids some simple, but at the same time the most frequently occurring, cases of deadlocks between two AGVs. More complicated deadlock situations are not predicted ahead of time but detected and resolved after they occur. Our method is computationally cheap and readily applicable to real time applications. The efficiency and effectiveness of our proposed methods have been validated by simulation.

  • PDF