• Title/Summary/Keyword: Collision Avoidance Algorithm

Search Result 317, Processing Time 0.022 seconds

Collision Avoidance of a Mobile Robot Using Intelligent Force Control Algorithm Based on Robot Dynamics (동역학 기반의 지능 힘제어 방식을 이용한 이동 로봇의 장애물 회피에 대한 연구)

  • Jang Eun Soo;Jung Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.9
    • /
    • pp.799-808
    • /
    • 2004
  • In this paper, a new collision avoidance algorithm based on the dynamic model of a mobile robot is proposed. In order to avoid obstacles on the path of a mobile robot, intelligent force control is used to regulate accurate distance between a robot and an obstacle. Since uncertainties from robot and environment dynamics degrade the performance of a collision avoidance task, neural network is used to compensate for uncertainties so that the collision avoidance can be performed intelligently. Simulation studies are conducted to confirm the proposed collision avoidance tracking control algorithm.

A Study on the Collision Avoidance Maneuver Optimization with Multiple Space Debris

  • Kim, Eun-Hyouek;Kim, Hae-Dong;Kim, Hak-Jung
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.1
    • /
    • pp.11-21
    • /
    • 2012
  • In this paper, the authors introduced a new approach to find the optimal collision avoidance maneuver considering multi threatening objects within short period, while satisfying constraints on the fuel limit and the acceptable collision probability. A preliminary effort in applying a genetic algorithm (GA) to those kinds of problems has also been demonstrated through a simulation study with a simple case problem and various fitness functions. And then, GA is applied to the complex case problem including multi-threatening objects. Two distinct collision avoidance maneuvers are dealt with: the first is in-track direction of collision avoidance maneuver. The second considers radial, in-track, cross-track direction maneuver. The results show that the first case violates the collision probability threshold, while the second case does not violate the threshold with satisfaction of all conditions. Various factors for analyzing and planning the optimal collision avoidance maneuver are also presented.

Collision Avoidance Based on Null Space Projection for a Nonholonomic Mobile Manipulator (비홀로노믹 모바일 매니퓰레이터의 영공간 투영에 기반한 충돌 회피)

  • Kim, KyeJin;Yoon, InHwan;Song, Jae-Bok
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.1
    • /
    • pp.32-39
    • /
    • 2022
  • Since the mobile platform and the manipulator mounted on it move at the same time in a mobile manipulator, the risk of mutual collision increases. Most of the studies on collision avoidance of mobile manipulators cannot be applied to differential drive type mobile platforms or the end-effector tends to deviate from the desired trajectory for collision avoidance. In this study, a collision avoidance algorithm based on null space projection (CANS) that solves these two problems is proposed. To this end, a modified repulsive force that overcomes the non-holonomic constraints of a mobile platform is generated by adding a virtual repulsive force in the direction of its instantaneous velocity. And by converting this repulsive force into a repulsive velocity and applying it to the null space, the end-effector of the robot avoids a collision while moving along its original trajectory. The proposed CANS algorithm showed excellent performance through self-collision avoidance tests and door opening tests.

A Development of 3-D Resolution Algorithm for Aircraft Collision Avoidance

  • Kim, Youngrae;Lee, Sangchul;Lee, Keumjin;Kang, Ja-Young
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.3
    • /
    • pp.272-281
    • /
    • 2013
  • Traffic Collision Avoidance System (TCAS) is designed to enhance safety in aircraft operations, by reducing the incidences of mid-air collision between aircraft. The current version of TCAS provides only vertical resolution advisory to the pilots, if an aircraft's collision with another is predicted to be imminent, while efforts to include horizontal resolution advisory have been made, as well. This paper introduces a collision resolution algorithm, which includes both vertical and horizontal avoidance maneuvers of aircraft. Also, the paper compares between the performance of the proposed algorithm and that of algorithms with only vertical or horizontal avoidance maneuver of aircraft.

New Vehicle Collision Warning Algorithm Based On Fuzzy Logic (퍼지 논리에 기반한 차량 충돌 경보 알고리듬)

  • 김선호;오세영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.233-247
    • /
    • 1999
  • Traffic accidents are normally caused by late or faulty judgements due to the driver's inaccurate estimation of the distance, velocity, and acceleration from the surrounding vehicles as well as his carelessness or inattention. Thus, the development of collision avoidance systems is motivated by their great potential for increased vehicle safety. A typical collision avoidance system consists of the forward-looking sensor, the criteria for activation of collision warming and avoidance, the collision avoidance maneuvers, and the user interface. This thesis is concerned with the development of a collision warning algorithm in which the driver is warned of approaching collision with the visual and/or the audible signals . The warning algorithm based on fuzzy logic is presented here based on new warning criteria. It has been newly derived from the conventional warning equation by adding a new input variable of the required deceleration to avoid collision. The algorithm is also able to adapt to the individual driver's taste along with the different road conditions by externally controlling the warning intensity. Finally , the proposed algorithm has been validated using computer simulation.

  • PDF

Multi-robot simulator for collision avoidance (충돌 회피를 위한 다중 로봇 시뮬레이터)

  • 이재용;이범희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.417-422
    • /
    • 1993
  • Robots working in the multiple robot system can perform the variety of tasks compared to the single robot system, while they are subject to the various tight constraints such as the precise coordination and the mutual collision avoidance during the task execution. In this paper, we provide an algorithm and graphical verification for collision avoidance between two robots working together. The algorithm calculates the minimum time delay for collision avoidance and the graphical verification is performed through the 3-D graphic simulator.

  • PDF

Intruder Tracking and Collision Avoidance Algorithm Design for Unmanned Aerial Vehicles using a Model-based Design Method (모델 기반 설계 기법을 이용한 무인항공기의 침입기 추적 및 충돌회피 알고리즘 설계)

  • Choi, Hyunjin;Yoo, Chang-Sun;Ryu, Hyeok;Kim, Sungwook;Ahn, Seokmin
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.25 no.4
    • /
    • pp.83-90
    • /
    • 2017
  • Unmanned Aerial Vehicles(UAVs) require collision avoidance capabilities equivalent to the capabilities of manned aircraft to enter the airspace of manned aircraft. In the case of Visual Flight Rules of manned aircraft, collision avoidance is performed by 'See-and-Avoid' of pilots. To obtain those capabilities of UAVs named as 'Sense-and-Avoid', sensor-system-based intruder tracking and collision avoidance methods are required. In this study, a multi-sensor-based tracking, data fusion, and collision avoidance algorithm is designed by using a model-based design tool MATLAB/SIMULINK, and validations of the designed model and code using numerical simulations and processor-in-the-loop simulations are performed.

Self-Collision Detection/Avoidance for a Rescue Robot by Modified Skeleton Algorithm (보완 골격 알고리듬을 이용한 구난로봇의 자체 충돌감지/회피)

  • Lee, Wonsuk;Hong, Seongil;Park, Gyuhyun;Kang, Younsik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.451-458
    • /
    • 2015
  • This paper handles self-collision avoidance for a rescue robot with redundant manipulators. In order to detect all available self-collisions in advance, minimum distances between arbitrary robot parts should be monitored in real-time. For the minimum distance estimation, we suggest a modified method from a previous skeleton algorithm which has less computation burden and realize collision avoidance based on a potential function using the proposed algorithm. The resultant command by collision avoidance should not disturb a given primary task, so null-space of joint solution from a CLIK is utilized for collision avoidance by a gradient projection method.

Collision Avoidance Using Linear Quadratic Control in Satellite Formation Flying

  • Mok, Sung-Hoon;Choi, Yoon-Hyuk;Bang, Hyo-Choong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.4
    • /
    • pp.351-359
    • /
    • 2010
  • This paper proposes a linear system control algorithm with collision avoidance in multiple satellites. Consideration of collision avoidance is augmented by adding a weighting term in the cost function of the original tracking problem in linear quadratic control (LQC). Because the proposed algorithm relies on a similar solution procedure to the original LQC, its inherent advantages, including gain-robustness and optimality, are preserved. To confirm and visualize the derived algorithm, a simple example of two-vehicle motion in the two-dimensional plane is illustrated. In addition, the proposed collision avoidance control is applied to satellite formation flying, and verified by numerical simulations.

A decentralized collision avoidance algorithm of two mobile robots using potential fields

  • Yang, Dong-Hoon;Hong, Suk-Kyo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1544-1549
    • /
    • 2004
  • A new collision avoidance algorithm is presented for two mobile robots in narrow corridor environments. When two robots meet each other in a narrow corridor, one should yield the way to the other robot. To solve the problem arising in this situation, they exchange their path to get information about crossing-points to check avoidance conditions, which are necessary for choosing the robot to yield. The conditions are summarized as follows. 1) If one robot blocks the path to the closest crossing-point in front of the other robot. 2) If the closest crossing-point of each robot is the same point. 3) Which robot is closer to the closest crossing-point. In this paper, we propose a path planning algorithm for the robot which yield the way. Simulation results are presented to verify the feasibility of the proposed collision avoidance algorithm.

  • PDF