• Title/Summary/Keyword: Collision Attack

Search Result 44, Processing Time 0.031 seconds

A Study on Group Key Generation and Exchange using Hash Collision in M2M Communication Environment (M2M 통신 환경에서 해시 충돌을 이용한 그룹키 생성 및 교환 기법 연구)

  • Song, Jun-Ho;Kim, Sung-Soo;Jun, Moon-Seog
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.5
    • /
    • pp.9-17
    • /
    • 2019
  • As the IoT environment becomes more popular, the safety of the M2M environment, which establishes the communication environment between objects and objects without human intervention, becomes important. Due to the nature of the wireless communication environment, there is a possibility of exposure to security threats in various aspects such as data exposure, falsification, tampering, deletion and privacy, and secure communication security technology is considered as an important requirement. In this paper, we propose a new method for group key generation and exchange using trap hash collision hash in existing 'M2M communication environment' using hash collision, And a mechanism for confirming the authentication of the device and the gateway after the group key is generated. The proposed method has attack resistance such as spoofing attack, meson attack, and retransmission attack in the group communication section by using the specificity of the collision message and collision hash, and is a technique for proving safety against vulnerability of hash collision.

Group Key Generation and Exchange Scheme using a Trapdoor Collision Hash in M2M Communications Environment (M2M 통신 환경에서 트랩도어 충돌 해쉬를 이용한 그룹키 생성 및 교환 기법)

  • Kim, Sung-Soo;Jun, Moon-Seog;Choi, Do-Hyeon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.5
    • /
    • pp.9-17
    • /
    • 2015
  • The development of wireless communication technology and change in the ICT market has led to the development of the M2M service and technology. Under these circumstances, the M2M environment has been the focus of communication environment construction between machines without control or direct intervention of human being. With characteristics of wireless communication environment, the possibility of being exposed to numerous security threats and safe communication security technology have becoming an issue an important requirements for problems such as data exposure, forgery, modulation, deletion, and privacy. This research analyzes requirements of trapdoor collision hash, generates keys between groups under the M2M environment by using the specificity of trapdoor, and suggests technology to exchange keys with session keys. Further, it also suggests techniques to confirm authentication of device and gateway in accordance with group key generation. The techniques herein suggested are confirmed as safe methods in that they have attack resistance such as Masquerade Attack, Man-in-the-Middle Attack, and Replay Attack in the group communication block by using the speciality of collision message and collision hash.

Collision Attacks on Crypton and mCrypton (블록 암호 Crypton, mCrypton에 대한 충돌 공격)

  • Kim, Tae-Woong;Kim, Jong-Sung;Jeong, Ki-Tae;Sung, Jae-Chul;Lee, Sang-Jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.19 no.1
    • /
    • pp.53-62
    • /
    • 2009
  • H. Gilbert et al. proposed a collision attack on 7-round reduced Rijndael[5]. Applying this attack, we propose collision attacks on 8-round reduced Crypton, 8-round reduced mCrypton in this paper. Attacks on Crypton requires $2^{161.6}$ time complexity with $2^{96}$ chosen plaintexts, respectively. The attack on mCrypton requires $2^{81.6}$ time complexity with $2^{48}$ chosen plaintexts. These results are the best attacks on Crypton and mCrypton in published literatures.

Security Evaluation Against Collision-based Power Analysis on RSA Algorithm Adopted Exponent Splitting Method (지수 분할 기법이 적용된 RSA 알고리듬에 대한 충돌 전력 분석 공격 안전성 평가)

  • Ha, Jaecheol
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.5
    • /
    • pp.985-991
    • /
    • 2015
  • The user's secret key can be retrieved by various side channel leakage informations occurred during the execution of cryptographic RSA exponentiation algorithm which is embedded on a security device. The collision-based power analysis attack known as a serious side channel threat can be accomplished by finding some collision pairs on a RSA power consumption trace. Recently, an RSA exponentiation algorithm was proposed as a countermeasure which is based on the window method adopted combination of message blinding and exponent splitting. In this paper, we show that this countermeasure provides approximately $2^{53}$ attack complexity, much lower than $2^{98}$ insisted in the original article, when the window size is two.

An Improved Horizontal Correlation Analysis Using Collision Characteristics on Lookup Table Based Scalar Multiplication Algorithms (참조 테이블 기반 스칼라 곱 알고리즘에 대한 충돌 특성을 이용한 향상된 수평상관분석)

  • Park, Dongjun;Lee, Sangyub;Cho, Sungmin;Kim, HeeSeok;Hong, Seokhie
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.2
    • /
    • pp.179-187
    • /
    • 2020
  • The FBC(Fixed-Base Comb) is a method to efficiently operate scalar multiplication, a core operation for signature generations of the ECDSA(Elliptic Curve Digital Signature Algorithm), utilizing precomputed lookup tables. Since the FBC refers to the table depending on the secret information and the values of the table are publicly known, an adversary can perform HCA(Horizontal Correlation Analysis), one of the single trace side channel attacks, to reveal the secret. However, HCA is a statistical analysis that requires a sufficient number of unit operation traces extracted from one scalar multiplication trace for a successful attack. In the case of the scalar multiplication for signature generations of ECDSA, the number of unit operation traces available for HCA is significantly fewer than the case of the RSA exponentiation, possibly resulting in an unsuccessful attack. In this paper, we propose an improved HCA on lookup table based scalar multiplication algorithms such as FBC. The proposed attack improves HCA by increasing the number of unit operation traces by determining such traces for the same intermediate value through collision analysis. The performance of the proposed attack increases as more secure elliptic curve parameters are used.

Side-Channel Analysis Based on Input Collisions in Modular Multiplications and its Countermeasure (모듈라 곱셈의 충돌 입력에 기반한 부채널 공격 및 대응책)

  • Choi, Yongje;Choi, Dooho;Ha, Jaecheol
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.24 no.6
    • /
    • pp.1091-1102
    • /
    • 2014
  • The power analysis attack is a cryptanalytic technique to retrieve an user's secret key using the side-channel power leakage occurred during the execution of cryptographic algorithm embedded on a physical device. Especially, many power analysis attacks have targeted on an exponentiation algorithm which is composed of hundreds of squarings and multiplications and adopted in public key cryptosystem such as RSA. Recently, a new correlation power attack, which is tried when two modular multiplications have a same input, is proposed in order to recover secret key. In this paper, after reviewing the principle of side-channel attack based on input collisions in modular multiplications, we analyze the vulnerability of some exponentiation algorithms having regularity property. Furthermore, we present an improved exponentiation countermeasure to resist against the input collision-based CPA(Correlation Power Analysis) attack and existing side channel attacks and compare its security with other countermeasures.

Intelligent Internal Stealthy Attack and its Countermeasure for Multicast Routing Protocol in MANET

  • Arthur, Menaka Pushpa;Kannan, Kathiravan
    • ETRI Journal
    • /
    • v.37 no.6
    • /
    • pp.1108-1119
    • /
    • 2015
  • Multicast communication of mobile ad hoc networks is vulnerable to internal attacks due to its routing structure and high scalability of its participants. Though existing intrusion detection systems (IDSs) act smartly to defend against attack strategies, adversaries also accordingly update their attacking plans intelligently so as to intervene in successful defending schemes. In our work, we present a novel indirect internal stealthy attack on a tree-based multicast routing protocol. Such an indirect stealthy attack intelligently makes neighbor nodes drop their routing-layer unicast control packets instead of processing or forwarding them. The adversary targets the collision avoidance mechanism of the Medium Access Control (MAC) protocol to indirectly affect the routing layer process. Simulation results show the success of this attacking strategy over the existing "stealthy attack in wireless ad hoc networks: detection and countermeasure (SADEC)" detection system. We design a cross-layer automata-based stealthy attack on multicast routing protocols (SAMRP) attacker detection system to identify and isolate the proposed attacker. NS-2 simulation and analytical results show the efficient performance, against an indirect internal stealthy attack, of SAMRP over the existing SADEC and BLM attacker detection systems.

Improved Key-Recovery Attacks on HMAC/NMAC-MD4 (HMAC/NMAC-MD4에 대한 향상된 키 복구 공격)

  • Kang, Jin-Keon;Lee, Je-Sang;Sung, Jae-Chul;Hong, Seok-Hie;Ryu, Heui-Su
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.19 no.2
    • /
    • pp.63-74
    • /
    • 2009
  • In 2005, Wang et al. discovered devastating collision attacks on the main hash functions from the MD4 family. After the discovery of Wang, many analysis results on the security of existing hash-based cryptographic schemes are presented. At CRYPTO'07, Fouque, Leurent and Nguyen presented full key-recovery attacks on HMAC/NMAC-MD4 and NMAC-MD5[4]. Such attacks are based on collision attacks on the underlying hash function, and the most expensive stage is the recovery of the outer key. At EUROCRYPT'08, Wang, Ohta and Kunihiro presented improved outer key recovery attack on HMAC/NMAC-MD4, by using a new near collision path with a high probability[2]. This improves the complexity of the full key-recovery attack on HMAC/NMAC-MD4 which proposed by Fouque, Leurent and Nguyen at CRYPTO'07: The MAC queries decreases from $2^{88}$ to $2^{72}$, and the number of MD4 computations decreases from $2^{95}$ to $2^{77}$. In this paper, we propose improved outer key-recovery attack on HMAC/NMAC-MD4 with $2^{77.1246}$ MAC queries and $2^{37}$ MD4 computations, by using divide and conquer paradigm.

Real Time Related Key Attack on Hummingbird-2

  • Zhang, Kai;Ding, Lin;Li, Junzhi;Guan, Jie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.8
    • /
    • pp.1946-1963
    • /
    • 2012
  • Hummingbird is a lightweight encryption and message authentication primitive published in RISC'09 and WLC'10. In FSE'11, Markku-Juhani O.Saarinen presented a differential divide-and-conquer method which has complexity upper bounded by $2^{64}$ operations and requires processing of few megabytes of chosen messages under two related nonces (IVs). The improved version, Hummingbird-2, was presented in RFIDSec 2011. Based on the idea of differential collision, this paper discovers some weaknesses of the round function WD16. Combining with the simple key loading algorithm, a related-key chosen-IV attack which can recover the full secret key is proposed. Under 15 pairs of related keys, the 128 bit initial key can be recovered, requiring $2^{27}$ chosen IV and the computational complexity is $O(2^{27})$. In average, the attack needs several minutes to recover the full 128-bit secret key on a PC. The experimental result corroborates our attack. The result shows that the Hummingbird-2 cipher can't resist related key attack.

Optimal Collision-Free Path Planning of Redundant Robotic Manipulators (여유 자유도를 갖는 Robot Manipulator 최적 충돌 회피 경로 계획에 관한 연구)

  • 장민근;기창두;기석호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.743-747
    • /
    • 1996
  • A Potential Field Method is applied to the proposed algorithm for the planning of collision-free paths of redundant manipulators. The planning is carried out on the base of kinematic configuration. To make repulsive potentials, sources are distributed on the boundaries of obstacles. To escape from local minimum of the main potential and to attack other difficulties of the planning, various potentials are defined simultaneously, Inverse Kinematics Problems of the redundant manipulators are solved by unconstrained optimization method. Computer simulation result of the path planning is presented.

  • PDF