• Title/Summary/Keyword: College of pharmacy

Search Result 14,633, Processing Time 0.048 seconds

Recombinant Mannose-binding Lectin Protein and Anti-Mannose-binding Lectin Polyclonal Antibody Production (재조합 mannose-binding lectin 단백질과 anti-mannose-binding lectin polyclonal 항체 제작)

  • Kwon, Hyun-Mi;Park, Jung-Ae;Choi, Byung-Tae;Choi, Yung-Hyun;Chung, Kyung-Tae
    • Journal of Life Science
    • /
    • v.19 no.2
    • /
    • pp.284-288
    • /
    • 2009
  • The innate immune system is important for the first line of host defence against infectious agents, which have penetrated the mechanical barriers. Mannose-binding lectin (MBL or mannan-binding protein, MBP) is a serum protein that is synthesized in the liver as a part of the acute phase response. MBL binds to carbohydrate structures presented by a wide range of pathogenic bacteria, viruses, fungi, and parasites. MBL is synthesized as a monomer that has a carboxy-terminal carbohydrate recognition domain, a neck region and a collagen region. Low MBL level was reported to be the most frequent immuno-deficiency syndrome. Although extensive studies have yielded detailed information on the structure of MBL, functions of the MBL complex are not fully understood yet. We, here, present cloning process of MBL cDNA from the rat liver and production of truncated recombinant MBL protein using a bacterial expression system in order to produce anti-MBL polyclonal antibody. Anti-MBL polyclonal antibody was raised in a New Zealand rabbit and its affinity was tested against recombinant protein using western blot technique. MBL cDNA, recombinant protein and anti-MBL antibody could be used as great arsenals to dissect cellular biochemistry of MBL.

Bioequivalence of Traline Tablet to Zoloft® Tablet (Sertraline HCI 50 mg)

  • Kang, Hyun-Ah;Cho, Hea-Young;Lee, Yong-Bok
    • Journal of Pharmaceutical Investigation
    • /
    • v.41 no.5
    • /
    • pp.317-322
    • /
    • 2011
  • Sertraline HCl, (1S-cis)-4-(3, 4-dichloro-phenyl)-1, 2, 3, 4-tetrahydro-N-methyl-l-naphthalenamine hydrochloride, is a potent and selective serotonin reuptake inhibitor which is used in the treatment of depression and obsessivecompulsive disorders. The purpose of the present study was to evaluate the bioequivalence of two sertraline HCl tablets, Traline tablet (Myungin Pharm. Co. Ltd.) and Zoloft$^{(R)}$ tablet (Pfizer Inc.), according to the guidelines of the Korea Food and Drug Administration (KFDA). The in vitro release of sertraline from the two sertraline HCl formulations was tested using KP VIII Apparatus II method with various dissolution media. Twenty four healthy Korean male volunteers, $23.50{\pm}1.74$ years in age and $64.09{\pm}7.10\;kg$ in body weight, were divided into two groups and a randomized $2{\times}2$ crossover study was employed. After a single tablet containing 50 mg as sertraline HCl was orally administered, blood samples were taken at predetermined time intervals and the concentrations of sertraline in serum were determined using an online columnswitching HPLC method with UV/Vis detection. The dissolution profiles of two formulations were similar in all tested dissolution media. The pharmacokinetic parameters such as $AUC_t$, $C_{max}$ and $T_{max}$ were calculated, and computer programs (Equiv Test and K-BE Test) were utilized for the statistical analysis of the parameters using logarithmically transformed $AUC_t$, $C_{max}$ and un-transformed $T_{max}$. The results showed that the differences between two formulations based on the reference drug, Zoloft$^{(R)}$ tablet, were 0.04, 3.26 and -1.29% for $AUC_t$, $C_{max}$, and $T_{max}$, respectively. There were no sequence effects between two formulations in these parameters. The 90% confidence intervals using logarithmically transformed data were within the acceptance range of log0.8 to log1.25. Thus, the criteria of the KFDA bioequivalence guideline were satisfied, indicating Traline tablet was bioequivalent to Zoloft$^{(R)}$ tablet.

Molecular and Biochemical Characteristics of ${\beta}$-Propeller Phytase from Marine Pseudomonas sp. BS10-3 and Its Potential Application for Animal Feed Additives

  • Nam, Seung-Jeung;Kim, Young-Ok;Ko, Tea-Kyung;Kang, Jin-Ku;Chun, Kwang-Hoon;Auh, Joong-Hyuck;Lee, Chul-Soon;Lee, In-Kyu;Park, Sunghoon;Oh, Byung-Chul
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.10
    • /
    • pp.1413-1420
    • /
    • 2014
  • Phytate is an antinutritional factor that impacts the bioavailability of essential minerals such as $Ca^{2+}$, $Mg^{2+}$, $Mn^{2+}$, $Zn^{2+}$, and $Fe^{2+}$ by forming insoluble mineral-phytate salts. These insoluble mineral-phytate salts are hydrolyzed rarely by monogastric animals, because they lack the hydrolyzing phytases and thus excrete the majority of them. The ${\beta}$-propeller phytases (BPPs) hydrolyze these insoluble mineral-phytate salts efficiently. In this study, we cloned a novel BPP gene from a marine Pseudomonas sp. This Pseudomonas BPP gene (PsBPP) had low sequence identity with other known phytases and contained an extra internal repeat domain (residues 24-279) and a typical BPP domain (residues 280-634) at the C-terminus. Structure-based sequence alignment suggested that the N-terminal repeat domain did not possess the active-site residues, whereas the C-terminal BPP domain contained multiple calcium-binding sites, which provide a favorable electrostatic environment for substrate binding and catalytic activity. Thus, we overexpressed the BPP domain from Pseudomonas sp. to potentially hydrolyze insoluble mineral-phytate salts. Purified recombinant PsBPP required $Ca^{2+}$ or $Fe^{2+}$ for phytase activity, indicating that PsBPP hydrolyzes insoluble $Fe^{2+}$-phytate or $Ca^{2+}$-phytate salts. The optimal temperature and pH for the hydrolysis of $Ca^{2+}$-phytate by PsBPP were $50^{\circ}C$ and 6.0, respectively. Biochemical and kinetic studies clearly showed that PsBPP efficiently hydrolyzed $Ca^{2+}$-phytate salts and yielded myo-inositol 2,4,6-trisphosphate and three phosphate groups as final products. Finally, we showed that PsBPP was highly effective for hydrolyzing rice bran with high phytate content. Taken together, our results suggest that PsBPP has great potential in the animal feed industry for reducing phytates.

Inhibition of Neurogenesis of Subventricular Zone Neural Stem Cells by 5-ethynyl-2'-deoxyuridine (EdU) (5-ethynyl-2'-deoxyuridine (EdU)에 의한 뇌실하 영역 신경줄기세포의 신경 세포로의 분화 억제)

  • Park, Ki-Youb;Oh, Hyun-Chang;Lee, Ji-Yong;Kim, Man Su
    • Journal of Life Science
    • /
    • v.27 no.6
    • /
    • pp.623-631
    • /
    • 2017
  • In the subventricular zone (SVZ) and the subgranular zone of the brain, neurogenesis occurs throughout one's lifespan. Neural stem cells (NSCs) in these regions divide to maintain their stem cell pools as well as differentiate into neurons and glial cells. To monitor cell division, a thymidine analogue such as 5-ethynyl-2'-deoxyuridine (EdU) has been used. In some cases, EdU was applied to label newly born neurons. Here, we report about the effects of EdU on the proliferation and differentiation of NSCs cultured from mouse SVZ. First, when NSCs were cultured in a proliferation medium containing EdU for 24 hr, they did not generate any neurons under the following differentiation conditions. When EdU was applied to the proliferating NSCs for 1 hr prior to differentiation, neurogenesis was still substantially reduced. Second, EdU decreased cell proliferation of NSCs in dose- and time-dependent manners. Finally, EdU inhibited differentiation into oligodendrocyte lineage, while the number of glial fibrillary acidic protein (GFAP)-positive astrocytes increased. To our knowledge, these findings are the first to show the effects of EdU on the differentiation of SVZ NSCs and suggest that cell division is necessary for differentiation into neurons and oligodendrocytes.

Pharmacological Studies on Aggressive Behavior Induced by Three Different Regional Brain Lesions (서로 다른 뇌 부위 손상으로 인한 공격성에 대한 약물학적 연구)

  • Lee, Soon-Chul;Yamamoto, Tsuneyuki;Ueki, Showa
    • The Korean Journal of Pharmacology
    • /
    • v.23 no.2
    • /
    • pp.95-100
    • /
    • 1987
  • The effects of various drugs on muricide and hyperirritability induced by bilateral lesions of the nucleus accumbens septi (NAB) were investigated in comparison with those on aggression induced by midbrain raphe nuclei-lesioned rats (raphe) and olfactory bulbectomized rats (OB). Muricide in NAB, raphe and OB rats were markedly suppressed by atropine. Muricide in NAB and raphe rats were significantly suppressed by L-DOPA, L-5-HTP, but muricide in OB rats was scarcely suppressed by L-DOPA and L-5-HTP. Hyperirritability in NAB, raphe and OB rats were significantly reduced by L-DOPA and haloperidol but not suppressed by atropine. On the other hand, muricide in NAB rats was markedly suppressed by antidepressants, particularily, nomifensine, clomipramine and desipramine. Muricide in raphe rats was markedly inhibited by nomifensine and clomipramine but only slightly inhibited by desipramine. Muricide in OB rats was markedly suppressed by imipramine. Hyperirritability in NAB, raphe and OB rats were slightly suppressed by antidepressants. These results suggested that the pharmacological characteristics of aggression induced by NAB rats resembles that induced by raphe rats, but differs from that induced by OB rats. It is also suggested that employment of different types of experimentally induced muricide in rats can be useful for the evaluation of antidepressants.

  • PDF

Development of Biologically Active Compounds from Edible Plant Sources XVI. -Isolation of Sterols from the Aerial Parts of Sajabalssuk (Artemisia herba)- (식용식물자원으로부터 활성물질의 탐색 XVI. -사자발쑥(Artemisia herba)의 전초로부터 sterol 화합물의 분리-)

  • Bang, Myun-Ho;Chung, Hae-Gon;Song, Myoung-Chong;Yoo, Jong-Su;Chung, Sun-A;Lee, Dae-Young;Kim, Se-Young;Jeong, Tae-Sook;Lee, Kyung-Tae;Choi, Myung-Sook;Baek, Nam-In
    • Applied Biological Chemistry
    • /
    • v.49 no.2
    • /
    • pp.140-144
    • /
    • 2006
  • Sajabalssuk (Artemisia herba) was extracted with 80% aqueous MeOH, and the concentrated extract was partitioned with EtOAc, n-BuOH and $H_2O$, successively. From the EtOAc and n-BuOH fractions, four sterols were isolated through the repeated silica gel and ODS column chromatographies. From the results of physico-chemical data including NMR, MS and IR, the chemical structures of the sterols were determined as ${\beta}-sitosterol$ (1), ergosterol peroxide (2), stigmasterol (3) and daucosterol (4). They were the first to be isolated from Sajabalssuk (Artemisia herba).

Surface Mmodification of Poly(DL-lactide-co-glycolide) Nanoparticle (Poly(DL-lactide-co-glycolide) 나노입자의 표면 수식)

  • Oh, Yu-Mi;Jung, Taek-Kyu;Chi, Sang-Cheol;Shin, Byung-Cheol
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.6
    • /
    • pp.601-607
    • /
    • 2003
  • We studied on preparation of nanoparticles modified surface using biodegradable polymer, poly(DL-lactide-co-glycolide) (PLGA). Two kinds of PLGA nanoparticles were prepared by a spontaneous emulsification solvent diffusion (SESD) method using cetyltrimethylammonium chloride (CTAC) and tetradecyltrimethylammonium bromide (TTAB) as a cationic surfactant and polyethylene glycol-block-polypropylene glycol copolymer (Lutrol F68) as a nonionic surfactant. Model protein was coated on the surface of nanoparticles by the ionic complexation. The model protein was that influenza vaccine ($H_3N_2,\;H_1N_1$, B strain) labeled with NHS-fluorescein. The sizes of cationic nanoparticles were 140-160 nm and the surface charges were 50-60 mV. The sizes of nonionic nanoprticles were 80-90 nm and the surface charge was -10 mV. After coating vaccine on the surface of nanoparticles, the sizes of cationic nanoparticles were increased to 380-400 nm and the size of nonionic nanoparticles was not increased. The amount of coated vaccine on the cationic nanoparticles was 22.73 ${\mu}g$/mg.

Comparison of Methanol Extracts from Vegetables on Antioxidative Effect under In Vitro and Cell System (채소류 메탄올 추출물의 In Vitro와 Cell System에서의 항산화능 비교)

  • Lee, Young A;Kim, Hyun Young;Cho, Eunj Ju
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.8
    • /
    • pp.1151-1156
    • /
    • 2005
  • The comparison on antioxidative activity of 13 kinds of vegetables that showed efficient oxygen radical absorbance capacity was carried out under in uitro and cellular model using LLC-$ PK_{1}$ renal epithelial cell, and also the total Phenol contents were analyzed. Beets, eggplant, and kale exerted the strong 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging effect and also these vegetables showed high contents of total phenol, indicating the positive relationship between DPPH radical scavenging effect and total phenol content. In addition, the treatment of 1 mM 2,2'-azobis (2-amidinopropane) dihydrochloride for 24 hrs to LLC-$PK_{1}$ cell susceptible to oxidative stress led to the decline of cell viability to 68.1$\%$, whereas the cellular oxidative damage was ameliorated by vegetables, especially eggplant and cauliflower, resulting in the elevation of cell viability to higher than 90$\%$ at the concentration of 5 $\mu$g/mL. This study suggests that 13 kinds of vegetables exert antioxidative activity under in uitro and cellular oxidative damage model, in particular among them eggplant showed the most effective antioxidative activity with higher total phenol content.

Ginseng Saponins Enhance Maxi $Ca^{2+}-activated\;K^+$ Currents of the Rabbit Coronary Artery Smooth Muscle Cells

  • Chunl Induk;Kim Nak-Doo
    • Journal of Ginseng Research
    • /
    • v.23 no.4
    • /
    • pp.230-234
    • /
    • 1999
  • Potassium channels play an important role in regulating vascular smooth muscle tone. Four types of $K^+$ channels areknown to be expressed in vascular smooth muscle cells, and maxi $Ca^{2+}-activated\;K^+$ channel $(BK_{Ca})$ is a dominant type of $K^+$ channels in these cells. Because total ginseng saponins and ginsenoside $Rg_3$ cause vasodilation with unclear mechanisms, we hypothesized that total ginseng saponins and ginsenoside $Rg_3$ induce vasodilation via activation of maxi $Ca^{2+}-activated\;K+$ channels. Whole-cell BKe. currents were voltage-dependent with half maximum activation at -14 mV, and the currents were sensitive to nanomolar ChTX and millimolar TEA. External application of total ginseng saponins increased the anlplitude of the whole-cell BKe. current in a concentration-dependent manner. Single-channel analysis indicates that total ginseng saponins caused the channel opening for a longer period of time. Ginsenoside $Rg_3$ increased the amplitude of whole-cell $K_{Ca}$ currents without affecting voltage dependence of the currents and increased single-channel open time. Hence, the results suggest that ginseng saponin-induced vasodilation may be due to activation of $K_{Ca}$.

  • PDF

Anti-inflammatory activities of fermented Rhus verniciflua stem bark extract and its growth inhibitory effect on Helicobacter pylori (발효옻 추출물의 헬리코박터파이로리 생장억제 및 항염증 활성)

  • Choi, Eun Yeong;Suk, Ki Tae;Choi, Han Seok;Kim, Myung Kon;Kwon, Yong Soo;Kim, Myong Jo
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.5
    • /
    • pp.502-507
    • /
    • 2016
  • This study was designed to investigate the beneficial effects of fermented Rhus verniciflua stem bark extract (RVSBE) on the stomach. We evaluated RVSBE for its antimicrobial activity against Helicobacter pylori (H. pylori), along with its ability to reduce the viability of human gastric cancer AGS cells. In addition, its anti-inflammatory effect was examined by evaluating nitric oxide (NO) production, and inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 mRNA expression in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. RVSBE showed antimicrobial activity, as 2.0 mg of the extract produced a clear inhibition zone of 4.0 mm. RVSBE inhibited the growth of AGS cells by 20% at concentrations ranging from 0.25-1.0 mg/mL. Regarding the anti-inflammatory effects of RVSBE, at 0.1-1.0 mg/mL, the extract showed more than 75% inhibition of NO production. In addition, cells treated with 0.25 mg/mL RVSBE showed a 25% decrease in iNOS mRNA levels compared to those in the LPS-treated cells. These results suggest that RVSBE may have significant inhibitory effects on inflammatory mediators, and therefore, may be a potential anti-inflammatory candidate.