• Title/Summary/Keyword: Collapsed wall

Search Result 62, Processing Time 0.024 seconds

Numerical Simulation for Prediction of Existing Cavity Location on Explosion-Induced Building Collapse (폭발에 의한 건축물 붕괴 시 매몰공동 위치 예측에 관한 수치해석 사례 연구)

  • Jung, Jahe;Park, Hoon;Kim, Kwang Yeom;Shin, Hyu-Soung
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.6
    • /
    • pp.94-101
    • /
    • 2015
  • When a severe disaster such as a building collapse occurs, a first priority for rapid rescue is to find a location where people are highly expected to be buried but alive. It is, however, very difficult to correctly designate the location of such cavities by conventional geophysical survey due to a pile of debris of building members. In this study, location of possible lifeguard cavities were evaluated through a series of simulations of building collapse by explosion depending on the height of the building, a structure of basement floor and a location of explosion. Three types of building structure: five-story, ten-story and fifteen-story were prepared as a model for the simulation. As a results, in the case of low building, only basement floor partially collapsed. On the other hand, in the case of high building, a collapsed range on the inside of the building increased and lifeguard spaces were formed only in the lateral side or corner of the building. In addition, when a wall exists in the basement floor, the possibility that cavities could be formed increased compared to the cases without wall. However, for the fifteen-story building case, no possible lifeguard cavity was found. It is noted that for a high rise building, the height of building more affect forming of safeguard cavity than the structure of the basement floor.

A Case Study on Collapsed Geosynthetic Reinforced Segmental Retaining Wall (블록식 보강토옹벽의 붕괴사례 연구)

  • Kim, Byoung-Il;Yoo, Wan-Kyu;Kim, Kyeong-Mo;Lee, Bong-Yeol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.2006-2012
    • /
    • 2013
  • This case study deal with the investigation of various causes and analyses concerning the cases of the collapse of reinforced segmental retaining walls installed for newly constructing a peripheral road within the campus of ${\bigcirc}{\bigcirc}$ University located in Gyeonggi-do. As results of stability analyses and reviewing of design documents concerning collapsed reinforced segmental retaining walls, such a collapse appeared because of problems related to construction including poor-compacted backfill, the omission of the investigation on the bearing capacity, the length and space in the installation of reinforced materials, and drainage systems. Also, problems during diverse types of designing were confirmed involving the stability analysis of the entire slope stability to be considered during designing and failure in application of the proposed methods of FHWA or NCMA which are generally used for two-tier reinforced segmental retaining walls. In addition, based on these details of the stability assessment, the study proposed reinforcement solutions and construction methods for stabilizing reinforced segmental retaining walls to be reconstructed in the future.

Validation of the seismic response of an RC frame building with masonry infill walls - The case of the 2017 Mexico earthquake

  • Albornoz, Tania C.;Massone, Leonardo M.;Carrillo, Julian;Hernandez, Francisco;Alberto, Yolanda
    • Advances in Computational Design
    • /
    • v.7 no.3
    • /
    • pp.229-251
    • /
    • 2022
  • In 2017, an intraplate earthquake of Mw 7.1 occurred 120 km from Mexico City (CDMX). Most collapsed structural buildings stroked by the earthquake were flat slab systems joined to reinforced concrete (RC) columns, unreinforced masonry, confined masonry, and dual systems. This article presents the simulated response of an actual six-story RC frame building with masonry infill walls that did not collapse during the 2017 earthquake. It has a structural system similar to that of many of the collapsed buildings and is located in a high seismic amplification zone. Five 3D numerical models were used in the study to model the seismic response of the building. The building dynamic properties were identified using an ambient vibration test (AVT), enabling validation of the building's finite element models. Several assumptions were made to calibrate the numerical model to the properties identified from the AVT, such as the presence of adjacent buildings, variations in masonry properties, soil-foundation-structure interaction, and the contribution of non-structural elements. The results showed that the infill masonry wall would act as a compression strut and crack along the transverse direction because the shear stresses in the original model (0.85 MPa) exceeded the shear strength (0.38 MPa). In compression, the strut presents lower stresses (3.42 MPa) well below its capacity (6.8 MPa). Although the non-structural elements were not considered to be part of the lateral resistant system, the results showed that these elements could contribute by resisting part of the base shear force, reaching a force of 82 kN.

Engineering implications of the RC building damages after 2011 Van Earthquakes

  • Ozmen, Hayri Baytan;Inel, Mehmet;Cayci, Bayram Tanik
    • Earthquakes and Structures
    • /
    • v.5 no.3
    • /
    • pp.297-319
    • /
    • 2013
  • Two destructive earthquakes occurred on October 23 and November 9, 2011 in Van province of Turkey. The damage in residential units shows significant deviation from the expectation of decreasing damage with increasing distance to epicenter. The most damaged settlement Ercis has the same distance to the epicenter with Muradiye, where no damage occurred while relatively less damage observed in Van having half distance. These three cities seem to have resembling soil conditions. If the damages are evaluated: joint failures and insufficient lap splice lengths are observed to be the main causes of the total collapses in RC buildings. Additionally, low concrete strength, reinforcement detailing mistakes, soft story, heavy overhang, pounding and short columns are among other damage reasons. Examples of damages due to non-structural elements are also given. Remarkable points about seismic damages are: collapsed buildings with shear-walls, heavily damaged buildings despite adequate concrete strength due to detailing mistakes, undamaged two-story adobe buildings close to totally collapsed RC ones and undamaged structural system in buildings with heavily damaged non-structural elements. On the contrary of the common belief that buildings with shear-walls are immune to total collapse among civil engineers, collapse of Gedikbulak primary school is a noteworthy example.

An impulse radio (IR) radar SoC for through-the-wall human-detection applications

  • Park, Piljae;Kim, Sungdo;Koo, Bontae
    • ETRI Journal
    • /
    • v.42 no.4
    • /
    • pp.480-490
    • /
    • 2020
  • More than 42 000 fires occur nationwide and cause over 2500 casualties every year. There is a lack of specialized equipment, and rescue operations are conducted with a minimal number of apparatuses. Through-the-wall radars (TTWRs) can improve the rescue efficiency, particularly under limited visibility due to smoke, walls, and collapsed debris. To overcome detection challenges and maintain a small-form factor, a TTWR system-on-chip (SoC) and its architecture have been proposed. Additive reception based on coherent clocks and reconfigurability can fulfill the TTWR demands. A clock-based single-chip infrared radar transceiver with embedded control logic is implemented using a 130-nm complementary metal oxide semiconductor. Clock signals drive the radar operation. Signal-to-noise ratio enhancements are achieved using the repetitive coherent clock schemes. The hand-held prototype radar that uses the TTWR SoC operates in real time, allowing seamless data capture, processing, and display of the target information. The prototype is tested under various pseudo-disaster conditions. The test standards and methods, developed along with the system, are also presented.

An Experimental and Analytical Studies on the Smoke Movement by Fire in High Rise Building (초고층 건축물의 화재 시 피난로 연기거동에 관한 실험 및 해석적 연구)

  • Shin, Yi-Chul;Kim, Soo-Young;Lee, Ju-Hee;Kwon, Young-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.05a
    • /
    • pp.11-14
    • /
    • 2008
  • A study on the fire and smoke behavior on experiments and analysis through STAR-CD in using about behavior analysis of the smoke. Kerosene of 3L in using on the experimental garden of 30cm in diameter same applies to heat release rate(HRR), buoyant force by Plume can be calculated at a rate of 1m/s. The result of experiment in average of velocity were 0.29m/s, and interpreted result were 0.28m/s. Besides, it is proved by interpreted that behavior of smoke movement can be not observed in the experiment. After smoke is Plume increased, ceiling-jet in formation being descend in smoke layer will be more thick smoke layer, and then vertical wall is collapsed in formation of wall-jet being descend. It is defined that smoke layer is more thick through descending course in wall-jet and ceiling-jet.

  • PDF

Damage evaluation of masonry buildings during Kahramanmaraş (Türkiye) earthquakes on February 06, 2023

  • Ercan Isik;Aydin Buyuksarac;Fatih Avcil;Enes Arkan;M.Cihan Aydin;Ali Emre Ulu
    • Earthquakes and Structures
    • /
    • v.25 no.3
    • /
    • pp.209-221
    • /
    • 2023
  • The Mw=7.7 (Pazarcık-Kahramanmaraş) and Mw=7.6 (Elbistan-Kahramanmaraş) earthquakes that occurred in Türkiye on 06.02.2023 with 9 hours' intervals, caused great losses of life and property as the biggest catastrophe in the instrumental period. The earthquakes affecting an area of 14% of the country were enormous and caused a great deal of loss of life and damage. Numerous buildings have collapsed or damaged at different levels, both in the city centers and in rural areas. Within the scope of this study, masonry structure damage built from different types of materials in the earthquake region was taken into consideration. In this study, the damage and causes of such masonry structures that do not generally receive engineering services were examined and explained in detail. Insufficient interlocking between wall-wall and wall-roof, inadequate masonry, lack of horizontal and vertical bond beams, usage of low-strength materials, poor workmanship, and heavy earthen roof are commonly caused to structural damages. Separation at the corner point and out-of-plane mechanism in structural walls, and heavy earthen roof damages are common types of damage in masonry structures.

Reinforcement of Collapsed Railway Subgrade and Line Capacity Increase Using Short Reinforcement with Rigid Wall (짧은 보강재와 일체형 강성벽체를 활용한 철도 붕괴노반 보강 및 선로용량 증대 기술)

  • Kim, Dae-Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.604-609
    • /
    • 2016
  • This study evaluated the long-term performance of RSR (Reinforced Subgrade for Railways) technology which increases the railway line capacity without the need for additional land. Its characteristics include the use of a short reinforcement with rigid wall, which make it possible to apply it in confined spaces. The 7m high and 40m long testbed employed to evaluate the long-term performance was designed and constructed near Jupo station on the Chang-hang line. This line, located close to a local bus route, had collapsed at the subgrade following heavy rainfall. The performance of the new type of subgrade was verified with long term measurements over a 2 year period including the surface and ground settlement, horizontal displacement of the wall, tensile strain of the reinforcement, and settlement of the rail top on the side track. Based on the results of the measurements made until now, we concluded that it had sufficient safety and serviceability for use as a railway subgrade. It is expected that RSR technology could be frequently used at sites which lack the necessary construction materials for an embankment and are located close to functional railway lines and boundaries, in order to settle civil complaints.

An Experimental Study on the Influence of Masonry InFilled Walls on the Seismic Performance of Reinforced Concrete Frames with Non-seismic Details (정적실험을 통한 조적채움벽체가 비내진상세 RC 골조의 내진성능에 미치는 영향 평가)

  • Kim, Kyoung-Min;Choen, Ju-Hyun;Baek, Eun-Rim;Oh, Sang-Hoon;Hwang, Cheol-Seong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.3
    • /
    • pp.114-120
    • /
    • 2017
  • In this paper, the effect of the masonry infill walls on the seismic performance of the reinforced concrete(RC) frames with non-seismic details was evaluated through the static test of an masonry infilled RC frame sub-assemblage with non-seismic details of real size, and comparison with the test results of the RC frame sub-assemblage with non-seismic details. As the test results, lots of cracks occurred on the surface of the entire frame due to the compression of the masonry infilled wall, and the beam-column joint finally collapsed with the expansion of the shear crack and buckling(exposure) of the reinforcement. On the other hand, the stiffness of the shear force-story drift relationship decreased due to the wall sliding crack and column flexural cracks, and the strength finally decreased by around 60% of the maximum strength. The damage that concentrated on the upper and lower parts of columns was dispersed in the entire frame such as columns, a beam, and beam-column joints due to the wall, and the specimen was finally collapsed by expansion of the shear crack of the joint, not the shear crack of the column. Also, the stiffness of RC frame increased by 12.42 times and the yield strength by 3.63 times, while the story drift at maximum strength decreased by 0.18 times.

Displacement Measuring Lab. Test of Reinforced-Soil Retaining Wall Block using 3D Digital Photogrammetry Image (수치사진영상을 이용한 보강토옹벽블록의 변위계측 실내시험)

  • Han, Jung-Geun;Jeong, Young-Woong;Hong, Ki-Kwon;Cho, Sam-Deok;Kim, Young-Seok;Bae, Sang-Ho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.3
    • /
    • pp.45-52
    • /
    • 2006
  • The collapsed cases are more and more increasing at the large scaled structures because of increasing of the risk due to natural disasters. The measuring instrument such as inclinometer, total station on reinforced-soil retaining wall has been used that displacement, settlement for stability assessment, maintenance and management of it. But because these has gotten many instability measuring factors for stability analysis of RRW, new system needs to complement disadvantage of existing system. In this study, we considered a application of Visual Monitoring System (VMS) to measure a displacement in face of wall through Lab. test about block assembly of segmental retaining wall during load test.

  • PDF