• 제목/요약/키워드: Collapse time

검색결과 579건 처리시간 0.022초

Progressive collapse of steel-framed gravity buildings under parametric fires

  • Jiang, Jian;Cai, Wenyu;Li, Guo-Qiang;Chen, Wei;Ye, Jihong
    • Steel and Composite Structures
    • /
    • 제36권4호
    • /
    • pp.383-398
    • /
    • 2020
  • This paper investigates the progressive collapse behavior of 3D steel-framed gravity buildings under fires with a cooling phase. The effect of fire protections and bracing systems on whether, how, and when a gravity building collapses is studied. It is found that whether a building collapses or not depends on the duration of the heating phase, and it may withstand a "short-hot" fire, but collapses under a mild fire or a "long-cool" fire. The collapse time can be conservatively determined by the time when the temperature of steel columns reaches a critical temperature of 550 ℃. It is also found that the application of a higher level of fire protection may prevent the collapse of a building, but may also lead to its collapse in the cooling phase due to the delayed temperature increment in the heated members. The tensile membrane action in a heated slab can be resisted by a tensile ring around its perimeter or by tensile yielding lines extended to the edge of the frame. It is recommended for practical design that hat bracing systems should be arranged on the whole top floor, and a combination of perimeter and internal vertical bracing systems be used to mitigate the fire-induced collapse of gravity buildings. It is also suggested that beam-to-column connections should be designed to resist high tensile forces (up to yielding force) during the cooling phase of a fire.

u-IT기반 계측정보를 이용한 급경사지붕괴 예측 시스템 개발 (The Development of Landslide Predictive System using Measurement Information based on u-IT)

  • 천동진;박영직;이승호;김정섭;정도영
    • 한국산학기술학회논문지
    • /
    • 제14권10호
    • /
    • pp.5115-5122
    • /
    • 2013
  • 본 논문은 급경사지(산사태 및 사면붕괴, 축대 등)붕괴 등으로 인하여 많은 생명과 재산피해 방지를 목적으로 붕괴 위험성을 감지하고 신속히 대응을 할 수 있도록 하기 위하여 u-IT기반의 급경사지 붕괴예측 감시용 실시간 모니터링 시스템을 개발하였다. 급경사지붕괴 감시에 중요한 계측기로서 강우량 계측기, 간극수압 계측기, 지표변위 계측기, 지중경사 계측기, 함수비계측기, 영상분석 계측기 등을 선정하고 테스트베드에 적용하였다. 각 계측기의 신뢰성 검증에 필요한 동작기능 및 성능확인은 현장에 설치된 계측기 별로 실험을 통하여 확인하였다. 본 연구에서 개발한 급경사지붕괴 감지를 위한 USN기반의 실시간 급경사지 모니터링 시스템을 급경사지 붕괴감지뿐만 아니라 도로변 절개사면과 암반사면 등에 상시계측을 통하여 붕괴위험 예측에도 적용할 수 있으므로 인명피해와 재산피해를 최소할 수 있을 것으로 판단되며, 이 시스템은 본 연구의 시범적용 결과를 바탕으로 급경사지 전역에 확산될 계획에 있다.

Endochronic simulation for viscoplastic collapse of long, thick-walled tubes subjected to external pressure and axial tension

  • Lee, Kuo-Long;Chang, Kao-Hua
    • Structural Engineering and Mechanics
    • /
    • 제18권5호
    • /
    • pp.627-644
    • /
    • 2004
  • In this study, the endochronic theory was used to investigate the collapse of thick-walled tubes subjected to external pressure and axial tension. The experimental and theoretical findings of Madhavan et al. (1993) for thick-walled tubes of 304 stainless steel subjected to external pressure and axial tension were compared with the endochronic simulation. Collapse envelopes for various diameter-to-thickness tubes under two different pressure-tension loadings were involved. It has been shown that the experimental results were aptly described by the endochronic approach demonstrated from comparison with the theoretical prediction employed by Madhavan et al. (1993). Furthermore, by using the rate-sensitivity function of the intrinsic time measure proposed by Pan and Chern (1997) in the endochronic theory, our theoretical analysis was extended to investigate the viscoplastic collapse of thick-walled tubes subjected to external pressure and axial tension. It was found that the pressure-tension collapse envelopes are strongly influenced by the strain-rate during axial tension. Due to the hardening of the metal tube of 304 stainless steel under a faster strain-rate during uniaxial tension, the size of the tension-collapse envelope increases.

Effect of base isolation systems on increasing the resistance of structures subjected to progressive collapse

  • Tavakoli, Hamid R.;Naghavi, Fahime;Goltabar, Ali R.
    • Earthquakes and Structures
    • /
    • 제9권3호
    • /
    • pp.639-656
    • /
    • 2015
  • Seismic isolation devices are commonly used to mitigate damages caused by seismic responses of structures. More damages are created due to progressive collapse in structures. Therefore, evaluating the impact of the isolation systems to enhance progressive collapse-resisting capacity is very important. In this study, the effect of lead rubber bearing isolation system to increase the resistance of structures against progressive collapse was evaluated. Concrete moment resisting frames were used in both the fixed and base-isolated model structures. Then, progressive collapse-resisting capacity of frames was investigated using the push down nonlinear static analysis under gravity loads that specified in GSA guideline. Nonlinear dynamic analysis was performed to consider dynamic effects column removal under earthquake. The results of the push down analysis are highly dependent on location of removal column and floor number of buildings. Also, seismic isolation system does not play an effective role in increasing the progressive collapse-resisting capacities of structures under gravity loads. Base isolation helps to localize failures and prevented from spreading it to intact span under seismic loads.

MHD turbulence in expanding/collapsing media

  • 박준성;류동수;조정연
    • 천문학회보
    • /
    • 제36권1호
    • /
    • pp.85.2-85.2
    • /
    • 2011
  • We investigate the driven magnetohydrodynamic (MHD) turbulence by including the effect of the expansion and collapse of background medium. The main goal is to quantify the evolution and saturation of the strength and characteristic length scales of magnetic fields in expanding and collapsing media. Our findings are as follows. First, with the expansion and collapse of background medium, the time evolution of the magnetic and kinetic energy densities depends on the nature of forcing as well as the rate of expansion and collapse. Second, at scales close to the energy injection (or driving) scale, the slope of magnetic field power spectrum shallows with expansion but steepens with collapse. Third, various characteristic length scales, relative to the energy injection scale, decrease with expansion but increase with collapse. We discuss the astrophysical implications of our results.

  • PDF

Improved capacity spectrum method with inelastic displacement ratio considering higher mode effects

  • Han, Sang Whan;Ha, Sung Jin;Moon, Ki Hoon;Shin, Myoungsu
    • Earthquakes and Structures
    • /
    • 제7권4호
    • /
    • pp.587-607
    • /
    • 2014
  • Progressive collapse, which is referred to as the collapse of the entire building under local damages, is a common failure mode happened by earthquakes. The collapse process highly depends on the whole structural system. Since, asymmetry of the building plan leads to the local damage concentration; it may intensify the progressive collapse mechanism of asymmetric buildings. In this research the progressive collapse of regular and irregular 6-story RC ordinary moment resisting frame buildings are studied in the presence of the earthquake loads. Collapse process and collapse propagation are investigated using nonlinear time history analyses (NLTHA) in buildings with 5%, 15% and 25% mass asymmetry with respect to the number of collapsed hinges and story drifts criteria. Results show that increasing the value of mass eccentricity makes the asymmetric buildings become unstable earlier and in the early stages with lower number of the collapsed hinges. So, with increasing the mass eccentricity in building, instability and collapse of the entire building occurs earlier, with lower potential of the progressive collapse. It is also demonstrated that with increasing the mass asymmetry the decreasing trend of the number of collapsed beam and column hinges is approximately similar to the decreasing trend in the average story drifts of the mass centers and stiff edges. So, as an alternative to a much difficult-to-calculate local response parameter of the number of collapsed hinges, the story drift, as a global response parameter, measures the potential of progressive collapse more easily.

Risk Factors of Allogenous Bone Graft Collapse in Two-Level Anterior Cervical Discectomy and Fusion

  • Woo, Joon-Bum;Son, Dong-Wuk;Lee, Su-Hun;Lee, Jun-Seok;Lee, Sang Weon;Song, Geun Sung
    • Journal of Korean Neurosurgical Society
    • /
    • 제62권4호
    • /
    • pp.450-457
    • /
    • 2019
  • Objective : Anterior cervical discectomy and fusion (ACDF) is commonly used surgical procedure for cervical degenerative disease. Among the various intervertebral spacers, the use of allografts is increasing due to its advantages such as no harvest site complications and low rate of subsidence. Although subsidence is a rare complication, graft collapse is often observed in the follow-up period. Graft collapse is defined as a significant graft height loss without subsidence, which can lead to clinical deterioration due to foraminal re-stenosis or segmental kyphosis. However, studies about the collapse of allografts are very limited. In this study, we evaluated risk factors associated with graft collapse. Methods : We retrospectively reviewed 33 patients who underwent two level ACDF with anterior plating using allogenous bone graft from January 2013 to June 2017. Various factors related to cervical sagittal alignment were measured preoperatively (PRE), postoperatively (POST), and last follow-up. The collapse was defined as the ratio of decrement from POST disc height to follow-up disc height. We also defined significant collapses as disc heights that were decreased by 30% or more after surgery. The intraoperative distraction was defined as the ratio of increment from PRE disc height to POST disc height. Results : The subsidence rate was 4.5% and graft collapse rate was 28.8%. The pseudarthrosis rate was 16.7% and there was no association between pseudarthrosis and graft collapse. Among the collapse-related risk factors, pre-operative segmental angle (p=0.047) and intra-operative distraction (p=0.003) were significantly related to allograft collapse. The cut-off value of intraoperative distraction ${\geq}37.3%$ was significantly associated with collapse (p=0.009; odds ratio, 4.622; 95% confidence interval, 1.470-14.531). The average time of events were as follows: collapse, $5.8{\pm}5.7months$; subsidence, $0.99{\pm}0.50months$; and instrument failure, $9.13{\pm}0.50months$. Conclusion : We experienced a higher frequency rate of collapse than subsidence in ACDF using an allograft. Of the various preoperative factors, intra-operative distraction was the most predictable factor of the allograft collapse. This was especially true when the intraoperative distraction was more than 37%, in which case the occurrence of graft collapse increased 4.6 times. We also found that instrument failure occurs only after the allograft collapse.

Posttraumatic Delayed Vertebral Collapse : Kummell's Disease

  • Lim, Jeongwook;Choi, Seung-Won;Youm, Jin-Young;Kwon, Hyon-Jo;Kim, Seon-Hwan;Koh, Hyeon-Song
    • Journal of Korean Neurosurgical Society
    • /
    • 제61권1호
    • /
    • pp.1-9
    • /
    • 2018
  • Posttraumatic delayed vertebral collapse, known as Kummell's disease, is increasing in number of patients. This disease is already progressive kyphosis due to vertebral collapse at the time of diagnosis and it causes intractable pain or neurologic deficit due to intravertebral instability. Treatment is very difficult after progression of the disease, and the range of treatment, in hospital day, and cost of treatment are both increased. Clinical features, pathogenesis and radiologic findings of these disease groups were reviewed to determine risk factors for delayed vertebral collapse. The purpose of this article is to suggest appropriate treatment before vertebral collapse for patients with osteoporotic vertebral compression fracture who have risk factors for posttraumatic delayed vertebral collapse.

Ground motion selection and scaling for seismic design of RC frames against collapse

  • Bayati, Zeinab;Soltani, Masoud
    • Earthquakes and Structures
    • /
    • 제11권3호
    • /
    • pp.445-459
    • /
    • 2016
  • Quantitative estimation of seismic response of various structural systems at the collapse limit state is one of the most significant objectives in Performance-Based Earthquake Engineering (PBEE). Assessing the effects of uncertainties, due to variability in ground motion characteristics and random nature of earthquakes, on nonlinear structural response is a pivotal issue regarding collapse safety prediction. Incremental Dynamic Analysis (IDA) and fragility curves are utilized to estimate demand parameters and seismic performance levels of structures. Since producing these curves based on a large number of nonlinear dynamic analyses would be time-consuming, selection of appropriate earthquake ground motion records resulting in reliable responses with sufficient accuracy seems to be quite essential. The aim of this research study is to propose a methodology to assess the seismic behavior of reinforced concrete frames at collapse limit state via accurate estimation of seismic fragility curves for different Engineering Demand Parameters (EDPs) by using a limited number of ground motion records. Research results demonstrate that accurate estimating of structural collapse capacity is feasible through applying the proposed method offering an appropriate suite of limited ground motion records.

Evaluation of seismic collapse capacity of regular RC frames using nonlinear static procedure

  • Jalilkhani, Maysam;Manafpour, Ali Reza
    • Structural Engineering and Mechanics
    • /
    • 제68권6호
    • /
    • pp.647-660
    • /
    • 2018
  • The Incremental Dynamic Analysis (IDA) procedure is currently known as a robust tool for estimation of seismic collapse capacity. However, the procedure is time-consuming and requires significant computational efforts. Recently some simplified methods have been developed for rapid estimation of seismic collapse capacity using pushover analysis. However, a comparative review and assessment of these methods is necessary to point out their relative advantages and shortcomings, and to pave the way for their practical use. In this paper, four simplified pushover analysis-based methods are selected and applied on four regular RC intermediate moment-resisting frames with 3, 6, 9 and 12 stories. The accuracy and performance of the different simplified methods in estimating the median seismic collapse capacity are evaluated through comparisons with the results obtained from IDAs. The results show that reliable estimations of the summarized 50% fractile IDA curve are produced using SPO2IDA and MPA-based IDA methods; however, the accuracy of the results for 16% and 84% fractiles is relatively low. The method proposed by Shafei et al. appears to be the most simple and straightforward method which gives rise to good estimates of the median sidesway collapse capacity with minimum computational efforts.