• Title/Summary/Keyword: Collapse time

Search Result 577, Processing Time 0.023 seconds

Probabilistic seismic risk assessment of simply supported steel railway bridges

  • Yilmaz, Mehmet F.;Caglayan, Barlas O.;Ozakgul, Kadir
    • Earthquakes and Structures
    • /
    • v.17 no.1
    • /
    • pp.91-99
    • /
    • 2019
  • Fragility analysis is an effective tool that is frequently used for seismic risk assessment of bridges. There are three different approaches to derive a fragility curve: experimental, empirical and analytical. Both experimental and empirical methods to derive fragility curve are based on past earthquake reports and expert opinions which are not suitable for all bridges. Therefore, analytical fragility analysis becomes important. Nonlinear time history analysis is commonly used which is the most reliable method for determining probabilistic demand models. In this study, to determine the probabilistic demand models of bridges, time history analyses were performed considering both material and geometrical nonlinearities. Serviceability limit states for three different service velocities were considered as a performance goal. Also, support displacements, component yielding and collapse limits were taken into account. Both serviceability and component fragility were derived by using maximum likely hood methods. Finally, the seismic performance and critical members of the bridge were probabilistically determined and clearly presented.

An improvement on fuzzy seismic fragility analysis using gene expression programming

  • Ebrahimi, Elaheh;Abdollahzadeh, Gholamreza;Jahani, Ehsan
    • Structural Engineering and Mechanics
    • /
    • v.83 no.5
    • /
    • pp.577-591
    • /
    • 2022
  • This paper develops a comparatively time-efficient methodology for performing seismic fragility analysis of the reinforced concrete (RC) buildings in the presence of uncertainty sources. It aims to appraise the effectiveness of any variation in the material's mechanical properties as epistemic uncertainty, and the record-to-record variation as aleatory uncertainty in structural response. In this respect, the fuzzy set theory, a well-known 𝛼-cut approach, and the Genetic Algorithm (GA) assess the median of collapse fragility curves as a fuzzy response. GA is requisite for searching the maxima and minima of the objective function (median fragility herein) in each membership degree, 𝛼. As this is a complicated and time-consuming process, the authors propose utilizing the Gene Expression Programming-based (GEP-based) equation for reducing the computational analysis time of the case study building significantly. The results indicate that the proposed structural analysis algorithm on the derived GEP model is able to compute the fuzzy median fragility about 33.3% faster, with errors less than 1%.

Ground-Motion Prediction Equations based on refined data for dynamic time-history analysis

  • Moghaddam, Salar Arian;Ghafory-Ashtiany, Mohsen;Soghrat, Mohammadreza
    • Earthquakes and Structures
    • /
    • v.11 no.5
    • /
    • pp.779-807
    • /
    • 2016
  • Ground Motion Prediction Equations (GMPEs) are essential tools in seismic hazard analysis. With the introduction of probabilistic approaches for the estimation of seismic response of structures, also known as, performance based earthquake engineering framework; new tasks are defined for response spectrum such as the reference criterion for effective structure-specific selection of ground motions for nonlinear time history analysis. One of the recent efforts to introduce a high quality databank of ground motions besides the corresponding selection scheme based on the broadband spectral consistency is the development of SIMBAD (Selected Input Motions for displacement-Based Assessment and Design), which is designed to improve the reliability of spectral values at all natural periods by removing noise with modern proposed approaches. In this paper, a new global GMPE is proposed by using selected ground motions from SIMBAD to improve the reliability of computed spectral shape indicators. To determine regression coefficients, 204 pairs of horizontal components from 35 earthquakes with magnitude ranging from Mw 5 to Mw 7.1 and epicentral distances lower than 40 km selected from SIMBAD are used. The proposed equation is compared with similar models both qualitatively and quantitatively. After the verification of model by several goodness-of-fit measures, the epsilon values as the spectral shape indicator are computed and the validity of available prediction equations for correlation of the pairs of epsilon values is examined. General consistency between predictions by new model and others, especially, in short periods is confirmed, while, at longer periods, there are meaningful differences between normalized residuals and correlation coefficients between pairs of them estimated by new model and those are computed by other empirical equations. A simple collapse assessment example indicate possible improvement in the correlation between collapse capacity and spectral shape indicators (${\varepsilon}$) up to 20% by selection of a more applicable GMPE for calculation of ${\varepsilon}$.

Prediction of the Area Inundated by Lake Effluent According to Hypothetical Collapse Scenarios of Cheonji Ground at Mt. Baekdu (백두산 천지 붕괴 가상 시나리오 별 천지못 유출수의 피해영향범위 예측)

  • Suh, Jangwon;Yi, Huiuk;Kim, Sung-Min;Park, Hyeong-Dong
    • The Journal of Engineering Geology
    • /
    • v.23 no.4
    • /
    • pp.409-425
    • /
    • 2013
  • This study presents a prediction of a time-series of the area inundated by effluent from Heavenly Lake caused by ground behavior prior to a volcanic eruption. A GIS-based hydrological algorithm that considers the multi-flow direction of effluent, the absorption and storage capacity of the ground soil, the storage volume of the basin or the depression terrain, was developed. To analyze the propagation pattern, four hypothetical collapse zones on the cheonji ground were set, considering the topographical characteristics and distributions of volcanic rocks at Mt. Baekdu. The results indicate that at 3 hours after collapse, for both scenarios 1 and 2 (collapses of the entire/southern boundary of cheonji), a flood hazard exists for villages in China, but not for those on the North Korean side of the mountain, due to the topographical characteristics of Mt. Baekdu. It is predicted that villages in both North Korea and China would be significantly damaged by flood inundation at 3 hours elapsed time for both scenarios 3 and 4 (collapses on the southern boundary of cheonji and on the southeastern-peak area).

Long-term behavior of segmentally-erected prestressed concrete box-girder bridges

  • Hedjazi, S.;Rahai, A.;Sennah, K.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.6
    • /
    • pp.673-693
    • /
    • 2005
  • A general step-by-step simulation for the time-dependent analysis of segmentally-erected prestressed concrete box-girder bridges is presented. A three dimensional finite-element model for the balanced-cantilever construction of segmental bridges, including effects of the load history, material nonlinearity, creep, shrinkage, and aging of concrete and the relaxation of prestressing steel was developed using ABAQUS software. The models included three-dimensional shell elements to model the box-girder walls and Rebar elements representing the prestressing tendons. The step-by-step procedure allows simulating the construction stages, effects of time-dependent deformations of materials and changes in the structural system of the bridges. The structural responses during construction and throughout the service life were traced. A comparison of the developed computer simulation with available experimental results was conducted and good agreement was found. Deflection of the bridge deck, changes in stresses and strains and the redistribution of internal forces were calculated for different examples of bridges, built by the balanced-cantilever method, over thirty-year duration. Significant time-dependent effects on the bridge deflections and redistribution of internal forces and stresses were observed. The ultimate load carrying capacities of the bridges and the behavior before collapse were also determined. It was observed that the ultimate load carrying capacity of such bridges decreases with time as a result of time-dependent effects.

Stepped Isothermal Methods Using Time-Temperature Superposition Principles for Lifetime Prediction of Polyester Geogrids

  • Koo Hyun-Jin;Kim You-Kyum;Kim Dong-Whan
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2005.06a
    • /
    • pp.69-73
    • /
    • 2005
  • The failure of geogrids used for soil reinforcement application can be defined as an excessive creep strain which causes the collapse of slopes and embankments. Accordingly, the lifetime is evaluated as a time to reach the excessive creep strain using two accelerated creep testing methods, time-temperature superposition(TTS) and stepped isothermal methods(SIM). TTS is a well-accepted acceleration method to evaluate creep behavior of polymeric materials, while SIM was developed in the last ten years mainly to shorten testing time and minimize the uncertainty associated with inherent variability of multi-specimen tests. The SIM test is usually performed using single rib of geogrids for temperature steps of $14^{\circ}C$ and a dwell time of 10,000 seconds. However, for multi-ribs of geogrids, the applicability of the SIM has not been well established. In this study, the creep behaviors are evaluated using multi-ribs of polyester geogrids using SIM and TTS creep procedures and the newly designed test equipment. Then the lifetime of geogrids are predicted by analyzing the failure times to reach the excessive creep strains through reliability analysis.

  • PDF

Composite Action in Masonry Columns Due to Damage and Creep Interaction (손상과 크리프의 상호작용에 의한 조적조 기둥의 복합거동)

  • Kim, Jung Joong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.5 no.2
    • /
    • pp.27-32
    • /
    • 2014
  • Since the collapse of historical masonry structures in Europe in the late 1990's, the interests in understanding the long-term effect of masonry under sustained compressive stresses have increased. That requires combining the significance of time-dependent effects of creep with the effect of damage due to overstress to realize the evolution of cracks and then failure in masonry. Meanwhile, composite analysis of masonry columns was proven effective for realizing ultimate strength capacity of masonry column. In this study, a simplified mechanical model with step-by-step in time analysis was proposed to incorporate the interaction of damage and creep to estimate the maximum stress occurred in masonry. It was examined that the interaction of creep and damage in masonry can accelerate the failure of masonry.

Collapsing effects in numerical simulation of chaotic dynamical systems

  • Daimond, P.;Kloeden, P.;Pokrovskii, A.;Suzuki, M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.753-757
    • /
    • 1994
  • In control system design, whether the various subsystems are in discrete time or continuous time, the state space is usually regarded as a continuum. However, when the system is implemented, some subsystems may have a state space which is a subset of finite computer arithmetic. This is an important concern if a subsystem has chaotic behaviour, because it is theoretically possible for rich and varied motions in a continuum to collapse to trivial and degenerate behaviour in a finite and discrete state space [5]. This paper discusses new ways to describe these effects and reports on computer experiments which document and illustrate such collapsing behaviour.

  • PDF

EVOLUTION OF ORBIT AND ROTATION OF A PSEUDO-SYNCHRONOUS BINARY SYSTEM ON THE MAIN SEQUENCE

  • Li, Lin-Sen
    • Journal of The Korean Astronomical Society
    • /
    • v.51 no.1
    • /
    • pp.1-4
    • /
    • 2018
  • We study the pseudo-synchronous orbital motion of a binary system on the main sequence. The equations of the pseudo-synchronous orbit are derived up to $O(e^4)$ where e is the eccentricy of the orbit. We integrate the equations to present their solutions. The theoretical results are applied to the evolution of the orbit and spin of the binary star Y Cygni, which has a current eccentricity of $e_0\;=\;0.142$. We tabulate our numerical results for the evolution of the orbit and spin per century. The numerical results for the semi-major axes and rotational angular velocities in the evolutional time scales of three stages (synchronization, circularization, and collapse time scale) are also tabulated. Synchronization is achieved in about $5{\times}10^3\;years$ followed by circularization lasting about $1{\times}10^5\;years$ before decaying in $2{\times}10^5\;years$.

Accelerated Creep Testing of Geogrids for Slopes and Embankments: Statistical Models and Data Analysis

  • Koo, Hyun-Jin;Kim, You-Kyum;Kim, Dong-Whan
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2004.07a
    • /
    • pp.227-232
    • /
    • 2004
  • The failure of geogrids can be defined as an excessive creep strain which causes the collapse of slopes and embankments. In this study, the accelerated creep tests were applied to two different types of polyester geogrids, at 75, 80, 85$^{\circ}C$ by applying 50% load of ultimate tensile strengths using a newly designed test equipment which is allowed the creep testing at higher temperatures. And then the creep curves were shifted and superposed in the time axis by applying time-temperature supposition principles. In predicting the lifetimes of geogrids, the underlying distribution for failure times were determined based on identification of the failure mechanism. The results indicate that the conventional procedures with the newly designed test equipment are shown to be effective in prediction of the lifetimes of geogrids with shorter test times. In addition, the predicted lifetimes of geogrids having different structures at various creep strains give guidelines for users to select the proper geogrids in the fields.

  • PDF