• Title/Summary/Keyword: Collapse prediction

Search Result 140, Processing Time 0.025 seconds

Evaluation on Flexural Behavior of Hybrid Beams with Rigid Joint Connecting Steel and Precast Concrete Elements (강재 보-PC 보가 강접합 연결된 하이브리드 보의 휨 거동 평가)

  • Seo, Eun-A;Yang, Keun-Hyeok;Hong, Seung-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.1
    • /
    • pp.13-21
    • /
    • 2016
  • A hybrid precast concrete beam system with a simple rigid connection was proposed to compensate the limitations and shortcomings of the conventional bolt connection associated with the H-beams embedded into concrete beams. Three beam specimens with fixed both ends were tested under one-point top cyclic loading to explore the effectiveness of the developed hybrid beam system in transferring externally applied flexure to a column. The main parameter considered was the length ($L_s$) of H-beam, which was selected to be $0.25L_I$, $0.5L_I$, and $1.0L_I$, where $L_I$ is the distance from the support to the point of inflection. All beam specimens showed a better displacement ductility ratio than the reinforced concrete beams with the same longitudinal reinforcement index, indicating that the cyclic load-deflection curve and ductility were insignificantly affected by $L_s$. The continuous strain distribution along the beam length and the prediction of the ultimate load based on the collapse mechanism ascertained the structural adequacy of the developed rigid connection.

A Simple Formula for Ultimate Strength Prediction of Hull Girders (선각거더의 최종강도 간이계산식)

  • J.K. Paik;A.E. Mansour
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.3
    • /
    • pp.83-97
    • /
    • 1995
  • The aim of this study is to derive a simple formula for predicting ultimate strength of hull girders under vertical bending moment. The existing formulas have been reviewed and classified into analytical approach, empirical approach and linear approximate approach. It is known that the ship hull will reach the ultimate limit state if both collapse of the compression flange and yielding of the tension flange occur. Side shells in the vicinity of the compression and tension flanges will often fail also, but the material around the final neutral axis will remain in the elastic state. Based on this observation, a credible distribution of longitudinal stresses around the hull section at the overall collapse state is assumed, and an explicit analytical formula is derived. The accuracy of the formula has been verified by a comparison of the experimental and the numerical results.

  • PDF

Slope Behavior Analysis Using the Measurement of Underground Displacement and Volumetric Water Content (지중 변위와 체적 함수비 계측을 통한 사면 거동 분석)

  • Kim, Yongseong;Kim, Manil;Bibek, Tamang;Jin, Jihuan
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.9
    • /
    • pp.29-36
    • /
    • 2018
  • Several studies have been conducted on monitoring system and automatic measuring instruments to prevent slope failure in advance in Korea and overseas. However, these studies have quite complex structure. Since most of the measurement systems are installed on the slope surface, the researches are carried on the measurement system that detects sign of slope collapse in advance and alerts are still unsatisfactory. In this study, slope collapse experiments were carried out to understand the slope failure mechanism according to rainfall conditions. The water content and displacement behavior at the early stage of the slope failure were analyzed through the measurement of the ground displacement and water content. The results of this study can be used by local government as a basic data for the design of slope failure alarm system to evacuate residents in case of slope failure or landslide due to heavy rainfall.

Evaluation of Buckling in Prestressed Composite Truss Girder using ADINA Structure Analysis (ADINA 구조해석을 이용한 PCT 거더교 좌굴 평가에 관한 연구)

  • Kim, Eui Soo;Kim, Jong Hyuk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.11
    • /
    • pp.1415-1421
    • /
    • 2013
  • Recently, to resolve problems regarding legal liability for accidents and disasters, various simulation techniques such as F.E.M. and F.V.M. have been used in the field of forensic engineering. In this study, we performed mechanical structure analysis using ADINA to investigate the cause of bridge collapse accidents. Such accidents occurred owing to modified and missing processes in comparison with the original design while filling with concrete. Modified and missing processes cause buckling of the upper plate and twisting of the main girder. Through this study, we determine the exact cause of bridge collapse by comparing the evaluation of the structure stability of the original design with the evaluation of the structure stability of the modified and missing process using ADINA structure analysis. Hence, this result indicates that buckling prediction through FEA is the most effective method.

Prediction of Pressurant Mass Requirement for Propellant Tank with Operating Condition Variation (운용조건 변화에 따른 추진제탱크 가압가스 요구량 예측)

  • Kwon, Oh-Sung;Han, Sang-Yeop;Cho, In-Hyun
    • Aerospace Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.54-62
    • /
    • 2011
  • The pressurant mass required for propellant tank pressurization with operating condition variation was estimated by using the numerical model already developed for this purpose. The model was applied to the concept design results of KSLV-II first stage oxygen tank. The supplied pressurant temperature, oxygen volumetric flow rate, and the ratio of length to diameter of the tank were selected as variables. The required pressurant mass and mass flow rate, collapse factor, ullage temperature distribution were predicted, and the results showed that the pressurant temperature had the largest effect on the amount of the required pressurant mass. The pressurizing efficiency of the propellant tank was calculated through analyzing energy distribution in the ullage. It was found that the gas-to-wall heat transfer in the ullage was dominant, and much of the pressurant energy was lost to tank wall heating.

A study on collision strength assessment of a jack-up rig with attendant vessel

  • Ma, Kuk Yeol;Kim, Jeong Hwan;Park, Joo Shin;Lee, Jae Myung;Seo, Jung Kwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.241-257
    • /
    • 2020
  • The rapid proliferation of oil/gas drilling and wind turbine installations with jack-up rig-formed structures increases structural safety requirements, due to the greater risks of operational collisions during use of these structures. Therefore, current industrial practices and regulations have tended to increase the required accidental collision design loads (impact energies) for jack-up rigs. However, the existing simplified design approach tends to be limited to the design and prediction of local members due to the difficulty in applying the increased uniform impact energy to a brace member without regard for the member's position. It is therefore necessary to define accidental load estimation in terms of a reasonable collision scenario and its application to the structural response analysis. We found by a collision probabilistic approach that the kinetic energy ranged from a minimum of 9 MJ to a maximum 1049 MJ. Only 6% of these values are less than the 35 MJ recommendation of DNV-GL (2013). This study assumed and applied a representative design load of 196.2 MN for an impact load of 20,000 tons. Based on this design load, the detailed design of a leg structure was numerically verified via an FE analysis comprising three categories: linear analysis, buckling analysis and progressive collapse analysis. Based on the numerical results from this analysis, it was possible to predict the collapse mode and position of each member in relation to the collision load. This study provided a collision strength assessment between attendant vessels and a jack-up rig based on probabilistic collision scenarios and nonlinear structural analysis. The numerical results of this study also afforded reasonable evaluation criteria and specific evaluation procedures.

Seismic Fragility Analysis of Concrete Bridges Considering the Lap Splices of T-type Column (T형 교각의 겹침이음을 고려한 콘크리트 교량의 지진취약도 분석)

  • An, Hyojoon;Cho, Baiksoon;Park, Ju-Hyun;Lee, Jong-Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.287-295
    • /
    • 2023
  • The collapse of bridges due to earthquakes results in many casualties and property damages. Thus, accurate prediction and preparation are required for the behavior of bridges during earthquakes. In particular, columns play an important role in the seismic behavior of bridges. The risk of collapse due to an earthquake increases when there is a problem of the insufficient lap splice in the column. In this study, to analyze the characteristics of the lap splice in the column, a numerical model was defined for the insufficient lap-spliced columns and verified using experimental data. The developed column model was applied to a commonly used RC slab bridge. Nonlinear static analysis for the column was performed to evaluate the change in the performance of the column according to the lap-spliced length. In addition, this study assessed the effect of the lap-spliced length on the seismic fragility analysis.

Analysis of Pillar Stability for Ground Vibration and Flyrock Impact in Underground Mining Blasting (발파진동 및 비산충격에 대한 광주 안정성 분석)

  • Park, Hyun-Sik;Kim, Ji-Soo;Ryu, Bok-Hyun;Kang, Choo-Won
    • Explosives and Blasting
    • /
    • v.30 no.2
    • /
    • pp.9-20
    • /
    • 2012
  • These days, mining industry prefers underground development for large mining because of exhaustive minning resources and large drafts and mining cavities thanks to extensive distribution of heavy excavation machines. In a mining design, to control collapse of cavities and secure stability, design of cavities and pillars are considered as very important. Therefore, this study obtained a prediction equation of blasting vibration through instrumentation for underground cavities. And we obtained theoretical shock vibration imposed on pillar through fragmentation analysis and measurement of flyrock distance. To examine the influence of pillar in underground mining blasting, we carried a finite element analysis and compared the result with prediction equation of blasting vibration, and shock vibration of flyrock when a impact was imposed on pillar and theoretical shock vibration.

Application of Stepped Isothermal Methods to Lifetime Prediction of Geogrids (SIM을 적용한 성토보강용 지오그리드의 수명예측)

  • Koo, Hyun-Jin;Kim, You-Kyum;Kim, Dong-Whan
    • Journal of the Korean Geosynthetics Society
    • /
    • v.4 no.1
    • /
    • pp.3-6
    • /
    • 2005
  • The failure of geogrids can be defined as an excessive creep strain which causes the collapse of slopes and embankments. In this study, the lifetime of knitted polyester geogrids was predicted by using SIM(Stepped Isothermal Methods using TTS principal) and statistical data analysis techniques. The results indicate that the creep strain was 8.74, 8.79, 8.80% with 2.16~2.20% of CV% at 75, 100, 114 years, respectively and the creep strain reaches 9.3% after 100 years of usage at $27^{\circ}C$ which meets the required lifetime(creep strain less than 10% after 100 years of usage) in the fields. The SIM method is shown to be effective in reduction of uncertainty associated with inherent variability of multi-specimen tests and shorter test times than conventional TTS(Time-Temperature Superposition).

  • PDF

A study on the fast prediction of the fragmentation zone using artificial neural network when a blasting occurs around a tunnel (인공신경망을 이용한 터널 주변 폭파 시 파쇄영역의 빠른 예측에 관한 연구)

  • You, Kwang-Ho;Jeon, Seok-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.2
    • /
    • pp.81-95
    • /
    • 2013
  • When collapse occurs due to explosion near a tunnel, fragmentation zone should be comprehended quickly to recover the function of the tunnel itself. In this study, a method to interpret explosion behavior and predict the fragmentation zone fast. For this purpose, the various 3D-meshes were generated using SolidWorks and explosion analyses were carried out using AUTODYN. The influence of explosion variables such as source location on fragmentation volume were examined by performing sensitivity analyses. Also, a training database for an artificial neural network analysis had been established and the optimal training model was selected, and the predicted results for fragmentation volume and radius were verified. The suggested method had demonstrated that it could be effective for the fast prediction of fragmentation zone.