• Title/Summary/Keyword: Collapse performance

Search Result 458, Processing Time 0.025 seconds

Damage states of yielding and collapse for elevated water tanks supported on RC frame staging

  • Lakhade, Suraj O.;Kumar, Ratnesh;Jaiswal, mprakash R.
    • Structural Engineering and Mechanics
    • /
    • v.67 no.6
    • /
    • pp.587-601
    • /
    • 2018
  • Elevated water tanks are inverted pendulum type structures where drift limit is an important criterion for seismic design and performance evaluation. Explicit drift criteria for elevated water tanks are not available in the literature. In this study, probabilistic approach is used to determine maximum drift limit for damage state of yielding and damage state of collapse for the elevated water tanks supported on RC frame staging. The two damage states are defined using results of incremental dynamic analysis wherein a total of 2160 nonlinear time history analyses are performed using twelve artificial spectrum compatible ground motions. Analytical fragility curves are developed using two-parameter lognormal distribution. The maximum allowable drifts corresponding to yield and collapse level requirements are estimated for different tank capacities. Finally, a single fragility curve is developed which provides maximum drift values for the different probability of damage. Further, for rational consideration of the uncertainties in design, three confidence levels are selected and corresponding drift limits for damage states of yielding and collapse are proposed. These values of maximum drift can be used in performance-based seismic design for a particular damage state depending on the level of confidence.

Comparison of the seismic performance of Reinforced Concrete-Steel (RCS) frames with steel and reinforced concrete moment frames in low, mid, and high-rise structures

  • Jalal Ghezeljeh;Seyed Rasoul Mirghaderi;Sina Kavei
    • Steel and Composite Structures
    • /
    • v.50 no.3
    • /
    • pp.249-263
    • /
    • 2024
  • This article presents a comparative analysis of seismic behavior in steel-beam reinforced concrete column (RCS) frames versus steel and reinforced concrete frames. The study evaluates the seismic response and collapse behavior of RCS frames of varying heights through nonlinear modeling. RCS, steel, and reinforced concrete special moment frames are considered in three height categories: 5, 10, and 20 stories. Two-dimensional frames are extracted from the three-dimensional structures, and nonlinear static analyses are conducted in the OpenSEES software to evaluate seismic response in post-yield regions. Incremental dynamic analysis is then performed on models, and collapse conditions are compared using fragility curves. Research findings indicate that the seismic intensity index in steel frames is 1.35 times greater than in RCS frames and 1.14 times greater than in reinforced concrete frames. As the number of stories increases, RCS frames exhibit more favorable collapse behavior compared to reinforced concrete frames. RCS frames demonstrate stable behavior and maintain capacity at high displacement levels, with uniform drift curves and lower damage levels compared to steel and reinforced concrete frames. Steel frames show superior strength and ductility, particularly in taller structures. RCS frames outperform reinforced concrete frames, displaying improved collapse behavior and higher capacity. Incremental Dynamic Analysis results confirm satisfactory collapse capacity for RCS frames. Steel frames collapse at higher intensity levels but perform better overall. RCS frames have a higher collapse capacity than reinforced concrete frames. Fragility curves show a lower likelihood of collapse for steel structures, while RCS frames perform better with an increase in the number of stories.

Crashworthiness Design Concepts for the Improved Energy Absorbing Performance of an Aluminum Lightweight Vehicle Body (알루미늄 경량 차체의 충돌에너지 흡수 성능 향상을 위한 설계 개선 연구)

  • 김범진;허승진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.155-160
    • /
    • 2003
  • For the weight reduction of vehicle body up to 20∼30% compared to the conventional monocoque steel body·.in-white, most automotive manufacturers have attempted to develop the aluminum intensive body-in-white using an aluminum space frame. In this paper, the crush tests and simulations for the aluminum extrusions filled with the structural from are performed to evaluate the collapse characteristics of that light weighted material. From these studies. the effectiveness of structural for is evaluated in improving automotive crashworthiness. In order to improve the improve energy absorption capability of the aluminum space frame body, safety design modifications are performed and analyzed based on the suggested collapse initiator concepts and on the application of the aluminum extrusions filled with structural foam. The effectiveness of these design concepts on the frontal and side impact characteristics of the aluminum intensive vehicle structure is investigated and summarized.

Foam Filling Effect on Bending Collapse Characteristics for Member Section Type (부재단면 형상에 따른 부재 굽힘붕괴 특성의 폼 충진 효과)

  • Lee, Il-Seok;Kang, Sung-Jong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.41-49
    • /
    • 2007
  • More diversified and strengthened safety regulations require higher safety vehicle with less weight. The structural foam can play a role for restraining section distortion of main body members undergoing bending collapse at vehicle crash. In this study, using structural foam modeling technology, validated in previous work, the bending collapse characteristics were evaluated for two types of circular and actual vehicle body frame sections. With changing the foam filling method, outer panel thickness and section shape, load carrying capability and absorbed energy were observed. The results indicate valuable design strategy for effectively elevating bending collapse performance of body members with foam filled.

Post-earthquake fire performance-based behavior of reinforced concrete structures

  • Behnama, Behrouz;Ronagh, Hamid R.
    • Earthquakes and Structures
    • /
    • v.5 no.4
    • /
    • pp.379-394
    • /
    • 2013
  • Post-earthquake fire (PEF) can lead to a rapid collapse of buildings damaged partially as a result of prior earthquake. Almost all standards and codes for the design of structures against earthquake ignore the risk of PEF, and thus buildings designed using those codes could be too weak when subjected to a fire after an earthquake. An investigation based on sequential analysis inspired by FEMA356 is performed here on the Immediate Occupancy, Life Safety and Collapse Prevention performance levels of structures, designed to the ACI 318-08 code, after they are subjected to an earthquake level with PGA of 0.35g. This investigation is followed by a fire analysis of the damaged structures, examining the time taken for the damaged structures to collapse. As a point of reference, a fire analysis is also performed for undamaged structures and before the occurrence of earthquake. The results indicate that the vulnerability of structures increases dramatically when a previously damaged structure is exposed to PEF. The results also show that the damaging effects of post-earthquake fire are exacerbated when initiated from the second and third floor. Whilst the investigation is made for a certain class of structures (conventional buildings, intermediate reinforced structure, 3 stories), the results confirm the need for the incorporation of post-earthquake fire into the process of analysis and design, and provides some quantitative measures on the level of associated effects.

Assessment of collapse safety margin for DDBD and FBD-designed RC frame buildings

  • Alimohammadi, Dariush;Abadi, Esmaeel Izadi Zaman
    • Structural Engineering and Mechanics
    • /
    • v.83 no.2
    • /
    • pp.229-244
    • /
    • 2022
  • This paper investigates the seismic performance of buildings designed using DDBD (Direct Displacement based Design) and FBD (Force based Design) approaches from the probabilistic viewpoint. It aims to estimate the collapse capacity of structures and assess the adequacy of seismic design codes. In this regard, (i) IDA (Incremental Dynamic Analysis) curves, (ii) interstory drift demand distribution curves, (iii) fragility curves, and (iv) the methodology provided by FEMA P-695 are applied to examine two groups of RC moment resistant frame buildings: 8-story structures with different plans, to study the effect of different span arrangements; and 3-, 7- and 12-story structures with a fixed plan, to study the dynamic behavior of the buildings. Structural modeling is performed in OpenSees software and validated using the results of an experimental model. It is concluded that increasing the building height would not significantly affect the response estimation of IDA and fragility curves of DDBD-designed structures, while the change in span arrangements is effective in estimating responses. In the investigation of the code adequacy, unlike the FBD approach, the DDBD can satisfy the performance criteria presented in FEMA P-695 and hence provide excellent performance.

Consequence-based robustness assessment of a steel truss bridge

  • Olmati, Pierluigi;Gkoumas, Konstantinos;Brando, Francesca;Cao, Liling
    • Steel and Composite Structures
    • /
    • v.14 no.4
    • /
    • pp.379-395
    • /
    • 2013
  • Aim of this paper is to apply to a steel truss bridge a methodology that takes into account the consequences of extreme loads on structures, focusing on the influence that the loss of primary elements has on the structural load bearing capacity. In this context, the topic of structural robustness, intended as the capacity of a structure to withstand damages without suffering disproportionate response to the triggering causes while maintaining an assigned level of performance, becomes relevant. In the first part of this study, a brief literature review of the topics of structural robustness, collapse resistance and progressive collapse takes place, focusing on steel structures. In the second part, a procedure for the evaluation of the structural response and robustness of skeletal structures under impact loads is presented and tested in simple structures. Following that, an application focuses on a case study bridge, the extensively studied I-35W Minneapolis steel truss bridge. The bridge, which had a structural design particularly sensitive to extreme loads, recently collapsed for a series of other reasons, in part still under investigation. The applied method aims, in addition to the robustness assessment, at increasing the collapse resistance of the structure by testing alternative designs.

Experimental and numerical study on the collapse failure of long-span transmission tower-line systems subjected to extremely severe earthquakes

  • Tian, Li;Fu, Zhaoyang;Pan, Haiyang;Ma, Ruisheng;Liu, Yuping
    • Earthquakes and Structures
    • /
    • v.16 no.5
    • /
    • pp.513-522
    • /
    • 2019
  • A long-span transmission tower-line system is indispensable for long-distance electricity transmission across a large river or valley; hence, the failure of this system, especially the collapse of the supporting towers, has serious impacts on power grids. To ensure the safety and reliability of transmission systems, this study experimentally and numerically investigates the collapse failure of a 220 kV long-span transmission tower-line system subjected to severe earthquakes. A 1:20 scale model of a transmission tower-line system is constructed in this research, and shaking table tests are carried out. Furthermore, numerical studies are conducted in ABAQUS by using the Tian-Ma-Qu material model, the results of which are compared with the experimental findings. Good agreement is found between the experimental and numerical results, showing that the numerical simulation based on the Tian-Ma-Qu material model is able to predict the weak points and collapse process of the long-span transmission tower-line system. The failure of diagonal members at weak points constitutes the collapse-inducing factor, and the ultimate capacity and weakest segment vary with different seismic wave excitations. This research can further enrich the database for the seismic performance of long-span transmission tower-line systems.

Experimental and numerical studies of precast connection under progressive collapse scenario

  • Joshi, Digesh D.;Patel, Paresh V.;Rangwala, Husain M.;Patoliya, Bhautik G.
    • Advances in concrete construction
    • /
    • v.9 no.3
    • /
    • pp.235-248
    • /
    • 2020
  • Progressive collapse in a structure occurs when load bearing members are failed and the adjoining structural elements cannot resist the redistributed forces and fails subsequently, that leads to complete collapse of structure. Recently, construction using precast concrete technology is adopted increasingly because it offers many advantages like faster construction, less requirement of skilled labours at site, reduced formwork and scaffolding, massive production with reduced amount of construction waste, better quality and better surface finishing as compared to conventional reinforced concrete construction. Connections are the critical elements for any precast structure, because in past, major collapse of precast structure took place because of connection failure. In this study, behavior of four different precast wet connections with U shaped reinforcement bars provided at different locations is evaluated. Reduced 1/3rd scale precast beam column assemblies having two span beam and three columns with removed middle column are constructed and examined by performing experiments. The response of precast connections is compared with monolithic connection, under column removal scenario. The connection region of test specimens are filled by cast-in-place micro concrete with and without polypropylene fibers. Performance of specimen is evaluated on the basis of ultimate load carrying capacity, maximum deflection at the location of removed middle column, crack formation and failure propagation. Further, Finite element (FE) analysis is carried out for validation of experimental studies and understanding the performance of structural components. Monolithic and precast beam column assemblies are modeled using non-linear Finite Element (FE) analysis based software ABAQUS. Actual experimental conditions are simulated using appropriate boundary and loading conditions. Finite Element simulation results in terms of load versus deflection are compared with that of experimental study. The nonlinear FE analysis results shows good agreement with experimental results.

Collapse-resistant performance of a single-story frame assembly and multi-story sub-frame under an internal column-removal scenario

  • Zhong, Wei-hui;Tan, Zheng;Tian, Li-min;Meng, Bao;Zheng, Yu-hui;Daun, Shi-chao
    • Steel and Composite Structures
    • /
    • v.41 no.5
    • /
    • pp.663-679
    • /
    • 2021
  • To elucidate the differences in the collapse behavior between a single-story beam-column assembly and multi-story frame, two 1/3-scale two-bay composite frames, including a single-story composite beam-column assembly and a three-story composite sub-frame, were designed and quasi-statically tested. The load-displacement responses, failure modes, and internal force development of the two frames were analyzed and compared in detail. Furthermore, the resistance mechanisms of the two specimens were explored, and the respective contributions of different load-resisting mechanisms to the total resistances were quantitatively separated to gain deeper insights. The experimental tests indicated that Vierendeel action was present in the two-dimensional multi-story frames, which led to an uneven internal force distribution among the three stories. The collapse resistance of TSDWA-3S in the flexural stage was not significantly increased by the structural redundancy provided by the additional story, as compared to that of TSDWA-1S. Although the development of the load response was similar in the two specimens at flexural stage, the collapse mechanisms of the multi-story composite frame were much more complicated than those of the single-story beam-column assembly, and the combined action between stories was critical in determining the internal force redistribution and rebalancing of the remaining structure.