DOI QR코드

DOI QR Code

Comparison of the seismic performance of Reinforced Concrete-Steel (RCS) frames with steel and reinforced concrete moment frames in low, mid, and high-rise structures

  • Received : 2023.09.21
  • Accepted : 2024.01.21
  • Published : 2024.02.10

Abstract

This article presents a comparative analysis of seismic behavior in steel-beam reinforced concrete column (RCS) frames versus steel and reinforced concrete frames. The study evaluates the seismic response and collapse behavior of RCS frames of varying heights through nonlinear modeling. RCS, steel, and reinforced concrete special moment frames are considered in three height categories: 5, 10, and 20 stories. Two-dimensional frames are extracted from the three-dimensional structures, and nonlinear static analyses are conducted in the OpenSEES software to evaluate seismic response in post-yield regions. Incremental dynamic analysis is then performed on models, and collapse conditions are compared using fragility curves. Research findings indicate that the seismic intensity index in steel frames is 1.35 times greater than in RCS frames and 1.14 times greater than in reinforced concrete frames. As the number of stories increases, RCS frames exhibit more favorable collapse behavior compared to reinforced concrete frames. RCS frames demonstrate stable behavior and maintain capacity at high displacement levels, with uniform drift curves and lower damage levels compared to steel and reinforced concrete frames. Steel frames show superior strength and ductility, particularly in taller structures. RCS frames outperform reinforced concrete frames, displaying improved collapse behavior and higher capacity. Incremental Dynamic Analysis results confirm satisfactory collapse capacity for RCS frames. Steel frames collapse at higher intensity levels but perform better overall. RCS frames have a higher collapse capacity than reinforced concrete frames. Fragility curves show a lower likelihood of collapse for steel structures, while RCS frames perform better with an increase in the number of stories.

Keywords

References

  1. ACI 318 (2019), Building Code Requirements for Reinforced Concrete, American Concrete Institute; Farmington Hills, MI, USA.
  2. AISC 360 (2022), Specification for Structural Steel Buildings, American Institute of Steel Construction; Chicago, IL, USA.
  3. Alizadeh, S., Attari, N.K. and Kazemi, M.T. (2013), "The seismic performance of new detailing for RCS connections", Construct. Steel Res., 91, 76-88 . https://doi.org/10.1016/j.jcsr.2013.08.010.
  4. ASCE 7 (2022), Minimum Design Loads and Associated Criteria for Buildings and Other Structures, American Society of Civil Engineers; Reston, VA, USA.
  5. Asgarian, B., Yahyai, M., Mirtaheri, M., Samani, H.R. and Alanjari, P. (2010), "Incremental dynamic analysis of high-rise towers", Struct. Design Tall Spec. Build., 19, 922-934. https://doi.org/10.1002/tal.518.
  6. Chen, C.H., Lai, W.C., Cordova, P., Deierlein, G.G. and Tsai, K.C. (2004), "Pseudo-dynamic test of full-scale RCS frame: part I-design, construction, testing", Structures 2004: Building on the Past, Securing the Future, 1-15. https://doi.org/10.1061/40700(2004)128.
  7. Eghbali, N.B. and Mirghaderi, S.R. (2017), "Experimental investigation of steel beam to RC column connection via a through-plate", Construct. Steel Res., 133, 125-140. https://doi.org/10.1016/j.jcsr.2017.02.007.
  8. FEMA-P695 (2009), Quantification of Building Seismic Performance Factors, Applied Technology Council 201 Redwood Shores Parkway, Redwood City, CA, USA.
  9. Giuffre, A. (1970), "Il comportamento del cemento armato per sollecitazioni cicliche di forte intensita", Giornale del Genio Civile.
  10. Haselton, C.B., Goulet, C.A., Mitrani-Reiser, J., Beck, J.L., Deierlein, G.G., Porter, K.A. and Taciroglu, E. (2008), "An assessment to benchmark the seismic performance of a codeconforming reinforced-concrete moment-frame building", PEER 2007/12; Pacific Earthquake Engineering Research Center, College of Engineering, University of California.
  11. Haselton, C.B., Liel, A.B., Lange, S.T. and Dierlein, G.G. (2008), "Beam-column element model calibrated for predicting flexural response leading to global collapse of RC frame buildings", PEER 2007/03, Pacific Earthquake Engineering Research Center, College of Engineering, University of California.
  12. Ibarra, L.F. and Krawinkler, H. (2005), "Global collapse of frame structures under seismic excitations", PEER 2005/06; Pacific Earthquake Engineering Research Center, College of Engineering, University of California.
  13. Ibarra, L.F., Medina, R.A. and Krawinkler, H. (2005), "Hysteretic models that incorporate strength and stiffness deterioration", Earthq. Eng. Struct. Dyn., 34(12), 1489-1511. https://doi.org/10.1002/eqe.495.
  14. Li, W., Li, Q.N. and Jiang, W.S. (2012), "Parameter study on composite frames consisting of steel beams and reinforced concrete columns", Construct. Steel Res., 77, 145-162. https://doi.org/10.1016/j.jcsr.2012.04.007.
  15. Liang, X. and Parra-Montesinos, G.J. (2004), "Seismic behavior of reinforced concrete column-steel beam subassemblies and frame systems", Struct. Eng., 130(2), 310-319. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(310).
  16. Lignos, D.G. and Krawinkler, H. (2011), "Deterioration modeling of steel components in support of collapse prediction of steel moment frames under earthquake loading", Struct. Eng., 137(11), 1291-1302. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000376.
  17. Malley, J.O., Dierlein, G., Krawinkler, H., Maffei, J., Pourzanjani, M., Wallace, J. and Heintz, J. (2010), "Modeling and acceptance criteria for seismic design and analysis of tall buildings", Research Report No. 72-1, Applied Technology Council, Pacific Earthquake Engineering Research Center.
  18. Men, J., Zhang, Y., Guo, Z. and Shi, Q. (2015), "Experimental research on seismic behavior of a composite RCS frame", Steel Compos. Struct., 18(4), 971-983. http://dx.doi.org/10.12989/scs.2015.18.4.971.
  19. Men, J.J., Guo, Z.F. and Shi, Q.X. (2015), "Experimental research on seismic behavior of novel composite RCS joints", Steel Compos. Struct., 19(1), 209-221. http://dx.doi.org/10.12989/scs.2015.19.1.209.
  20. Menegotto, M. (1973), "Method of analysis for cyclically loaded RC plane frames including changes in geometry and non-elastic behavior of elements under combined normal force and bending", In Proc. of IABSE Symposium on Resistance and Ultimate Deformability of Structures Acted on by Well Defined Repeated Loads.
  21. Mirghaderi, S.R., Eghbali, N.B. and Ahmadi, M.M. (2016), "Moment-connection between continuous steel beams and reinforced concrete column under cyclic loading", Construct. Steel Res., 118, 105-119. https://doi.org/10.1016/j.jcsr.2015.11.002.
  22. Nguyen, X.H., Le, D.D. and Nguyen, Q.H. (2019), "Static behavior of novel RCS through-column-type joint: Experimental and numerical study", Steel Compos. Struct., 32(1), 111-126. https://doi.org/10.12989/scs.2019.32.1.111.
  23. Noguchi, H. and Uchida, K. (2004), "Finite element method analysis of hybrid structural frames with reinforced concrete columns and steel beams", Struct. Eng., 130(2),328-335. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(328).
  24. Parra-Montesinos, G. and Wight, J.K. (2000), "Seismic response of exterior RC column-to-steel beam connections", Struct. Eng., 126(10), 1113-1121. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:10(1113).
  25. Paulay, T. and Priestley, M.N. (1992), Seismic Design of Reinforced Concrete and Masonry Buildings, Wiley, New York, United States of America.
  26. Reyes-Salazar, A., Bojorquez, E., Bojorquez, J., Llanes-Tizoc, M.D., GaxiolaCamacho, J.R. and Valenzuela-Beltran, F. (2021), "Some issues regarding the models of the mass and damping matrices in nonlinear seismic analysis of moment resisting steel frames", Structures, 33, 12-27. https://doi.org/10.1016/j.istruc.2021.04.043.
  27. Scott, B.D., Park, R. and Priestley, M.J. (1982), "Stress-strain behavior of concrete confined by overlapping hoops at low and high strain rates", Proceedings, 79(1), 13-27.
  28. Vamvatsikos, D. (2002), Seismic Performance, Capacity and Reliability of Structures as Seen through Incremental Dynamic Analysis, Stanford University, California, USA.
  29. Yoshikawa, H., Kathuria, D., Nishimoto, S., Deierlein, G.G. and Kawamoto, S. (2015), "Design of Composite RCS Special Moment Frames". Research Report No. 189; The John A. Blume Earthquake Engineering Center, Department of Civil and Environmental Engineering, Stanford university.
  30. Zareian, F. and Medina, R.A. (2010), "A practical method for proper modeling of structural damping in inelastic plane structural systems", Comput. Struct., 88, 45-53. https://doi.org/10.1016/j.compstruc.2009.08.001.