• 제목/요약/키워드: Collapse behavior

검색결과 473건 처리시간 0.037초

Collapse Behavior of an 18-Story Steel Moment Frame during a Shaking Table Test

  • Suita, Keiichiro;Suzuki, Yoshitaka;Takahashi, Motomi
    • 국제초고층학회논문집
    • /
    • 제4권3호
    • /
    • pp.171-180
    • /
    • 2015
  • A shaking table test was conducted at the E-Defense shaking table facility to investigate the damage and collapse behavior of a steel high-rise building under exceedingly large ground motions. The specimen is a one-third scale 18-story steel moment frame designed and constructed according to design specifications and practices used in the 1980s and 1990s. The shaking table tests used a long-duration, long-period ground motion simulated for a sequential Tokai, Nankai, and Nankai earthquake scenario. The building specimen was subjected to a series of progressively increasing scaled motions until it completely collapsed. The damage to the steel frame began through the yielding of beams along lower stories and column bases of the first story. After several excitations by increasing scaled motions, cracks initiated at the welded moment connections and fractures in the beam flanges spread to the lower stories. As the shear strength of each story decreased, the drifts of lower stories increased and the frame finally collapsed and settled on the supporting frame. From the test, a typical progression of collapse for a tall steel moment frame was obtained, and the hysteretic behavior of steel structural members including deterioration due to local buckling and fracture were observed. The results provide important information for further understanding and an accurate numerical simulation of collapse behavior.

A new method for progressive collapse analysis of RC frames

  • Abbasnia, Reza;Nav, Foad Mohajeri;Usefi, Nima;Rashidian, Omid
    • Structural Engineering and Mechanics
    • /
    • 제60권1호
    • /
    • pp.31-50
    • /
    • 2016
  • During the recent years, resistance mechanisms of reinforced concrete (RC) buildings against progressive collapse are investigated extensively. Although a general agreement is observed about their qualitative behavior in technical literature, there is not such a comprehensive point of view regarding the quantitative methods for predicting collapse resistance of RC members. Therefore, in the present study a simplified theoretical method is developed in order to predict general behavior of RC frames under the column removal scenario. In the introduced method, the robustness of the frame is extracted based on the capacity of the beams. The proposed method expresses ultimate arching and catenary capacities of the beams and also obtains the corresponding vertical displacements. Based on the calculated capacities, the introduced method also provides a quantitative assessment of structural robustness and determines whether or not the collapse occurs. The capability of the method is evaluated using experimental results in the literature. The evaluation study indicates that the proposed theoretical procedure can establish a reliable foundation for progressive collapse assessment of RC frame structures.

In-plane 굽힘 조건에서 감육엘보우 거동에 미치는 내압의 영향 (Effect of Internal Pressure on the Behavior of Wall Thinned Elbow under In-Plane Bending)

  • 김진원;김태순;박치용
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.268-273
    • /
    • 2004
  • This study is conducted to clarify the effect of internal pressure on the deformation and collapse behaviors of wall thinned elbow under in-plane bending moment. Thus the nonlinear three-dmensional finite element analyses were performed to obtain the moment-rotation curve of elbow contatining various wall thinning defects located at intrados and extrados under in-plane bending (closing and opening modes) with internal pressure of $0{\sim}15MPa.$ From the results of analysis, the effect of internal of collapse moment of elbow on the global deformation behavior of wall thinned elbow was discussed, and the dependence of collapse moment of elbow on the magnitude of internal pressure was investigated under different loading mode, defect location, and defect shape.

  • PDF

Experimental investigation on loading collapse curve of unsaturated soils under wetting and drying processes

  • Uchaipichat, Anuchit
    • Geomechanics and Engineering
    • /
    • 제2권3호
    • /
    • pp.203-211
    • /
    • 2010
  • An experimental program of isotropic loading tests on a compacted kaolin using a conventional triaxial equipment modified for testing unsaturated soils was perform to investigate a loading collapse curve of unsaturated soils along wetting and drying paths. The test data are presented in terms of effective stress on a range of constant suction. The suction hardening behavior was observed for both wetted and dried samples. With the use of an appropriate effective stress parameter, the unique relationship for loading collapse curve for wetting and drying processes was obtained.

Axial Impact Collapse Analysis of Spot Welded Hat and Double-hat Shaped Section Members Using an Explicit Finite Element Code

  • Cha, Cheon-Seok;Kim, Young-Nam;Kim, Sun-Kyu;Im, Kwang-Hee;Yang, In-Young
    • Journal of Mechanical Science and Technology
    • /
    • 제16권1호
    • /
    • pp.32-38
    • /
    • 2002
  • The purpose of this study is to analyze the collapse characteristics of widely used spot welded section members (hat and double hat section, nembers of vehicles) which possess the greatest energy absorbing capacity In an axial impact collapse. This study also suggests how the collapse load and deformation mode are obtained under impact. In the program system presented in this study, an explicit finite element code, LS-DY7A3D, is adopted for simulating complicated collapse behavior of the hat and double hat shaped section members with respect to section dimensions and spot weld pitches. Comparing the results with experiments, the simulation has been verified under a velocity of 7.19 m/sec (impact energy of 1034J)

연쇄붕괴의 동적거동을 고려한 새로운 등가정적해석 기법 (New Equivalent Static Analysis Method of Dynamic Behavior during Progressive Collapse)

  • 김치경;이재철
    • 한국전산구조공학회논문집
    • /
    • 제20권3호
    • /
    • pp.239-246
    • /
    • 2007
  • 본 논문에서는 한두 부재의 순간적 결손에 따른 동적 거동을 정적해석을 통하여 합리적이고 효율적으로 해석할 수 있는 등가정적 연쇄붕괴 해석기법을 제시한다. 제시된 기법은 부재 결손에 따른 구조물 강성 변화 및 순간적 결손에 따른 동적거동 확대 효과를 등가의 하중으로 치환한 강성등가하중을 초기 구조물에 적용하여 해석하는 방법으로서 기둥을 하나씩 제거해 가며 반복해석을 수행해야 하는 연쇄붕괴해석 특성에 매우 효율적이면서도 신뢰성이 높은 장점을 갖는다. 제시한 강성등가하중에 의한 해석결과를 시간이력해석결과 및 GSA에 의한 해석결과와 비교한 결과, 휨모멘트, 축력, 및 수직변위 등의 측면에서 GSA에 의한 해석결과에 비해 시간이력해석결과에 상당히 근접하는 결과를 나타냈다. 이를 통해 강성등가 하중에 의한 해석기법이 GSA에 의한 정적해석방법을 대체하는 새로운 정적해석기법으로서 효용성이 있음을 확인하였다.

경량화용 Al/CFRP원형 부재의 축 압궤거동에 관한 연구 (A Study on the Axial Crushing Behavior of Aluminum Cm Circular Members for light-weight)

  • 이길성;차천석;양인영
    • 한국자동차공학회논문집
    • /
    • 제13권5호
    • /
    • pp.50-56
    • /
    • 2005
  • Aluminum member absorbs energy by stable plastic deformation under axial loading. While CFRP(Carbon Fiber Reinforced Plastics) member absorbs energy by unstable brittle failure but its specific strength and stiffness is higher than those of aluminum member. In this study, for complement of detects and synergy effect by combination with the advantages of each member, the axial collapse tests were performed for aluminum CFRP members which are composed of aluminum members wrapped with CFRP outside aluminum circular members. Based on the respective collapse characteristics of aluminum and CFRP members, crushing behavior and energy absorption characteristics were analyzed for aluminum CRRP members which have different CFRP fiber orientation angle and thickness Test results showed that aluminum CFRP members supplemented the unstable brittle failure of CFRP members due to ductile nature of inner aluminum members. It turned out that the CFRP fiber orientation angle and thickness influence energy absorption capability together with the collapse mode of the members.

Stability behavior of the transmission line system under incremental dynamic wind load

  • Sarmasti, Hadi;Abedi, Karim;Chenaghlou, Mohammad Reza
    • Wind and Structures
    • /
    • 제31권6호
    • /
    • pp.509-522
    • /
    • 2020
  • Wind load is the principal cause for a large number of the collapse of transmission lines around the world. The transmission line is traditionally designed for wind load according to a linear equivalent method, in which dynamic effects of wind are not appropriately included. Therefore, in the present study, incremental dynamic analysis is utilized to investigate the stability behavior of a 400 kV transmission line under wind load. In that case, the effects of vibration of cables and aerodynamic damping of cables were considered on the stability behavior of the transmission line. Superposition of the harmonic waves method was used to calculate the wind load. The corresponding wind speed to the beginning of the transmission line collapse was determined by incremental dynamic analysis. Also, the effect of the yawed wind was studied to determine the critical attack angle by the incremental dynamic method. The results show the collapse mechanisms of the transmission line and the maximum supportable wind speed, which is predicted 6m/s less than the design wind speed of the studied transmission line. Based on the numerical modeling results, a retrofitting method has been proposed to prevent failure of the tower members under design wind speed.

붕괴스펙트럼을 활용한 용접철골모멘트골조의 비선형 동적 연쇄붕괴 근사해석 (Simplified Nonlinear Dynamic Progressive Collapse Analysis of Welded Steel Moment Frames Using Collapse Spectrum)

  • 이철호;김선웅;이경구;한규홍
    • 한국강구조학회 논문집
    • /
    • 제21권3호
    • /
    • pp.267-275
    • /
    • 2009
  • 본 논문에서는 기둥이 손실된 철골모멘트골조의 2경간 보의 동적거동 특성을 고찰하고 철골모멘트골조의 연쇄붕괴 예비평가를 위한 비선형 동적 근사해석법을 제안하였다. 기둥이 손실된 2경간 부분골조 모델의 동적거동의 분석을 통하여, 2경간 보의 중력하중과 보스팬-대-보춤 비가 최대 동적 변형요구의 지배적인 요소임을 확인하였다. 이를 토대로 2경간 보의 중력하중 변수와 최대 현회전각과의 관계를 기술하는 붕괴스펙트럼 개념을 새로이 제안하고 이의 활용법을 예시하였다. 3차원 비선형 동적 유한요소해석결과와 비교하여, 본 연구에서 제안한 방안이 용접 철골모멘트골조의 비선형 연쇄붕괴거동을 신속히 평가하는데 정확하면서도 매우 효율적임을 입증하였다.

열린 단면 부재의 굽힘 붕괴 실험 및 해석에 관한 연구 (A Study on the Bending Collapse at the Open Cross-Section Members with Experiment and Analysis)

  • 이승철;강신유
    • 한국정밀공학회지
    • /
    • 제21권4호
    • /
    • pp.132-139
    • /
    • 2004
  • The open section members have been used as the members of vehicle such as automotives, airplanes and trains. When vehicles are crashed, these members have absorption of the energy and it is necessary for retainment of the survival space, and as the result, the prediction for the displacement of members in this case of the crash of vehicles is very important. The displacements of members in this case of the crash of automotives show combined aspect of both axial collapse and bending collapse. In the rollover accident when bending collapse happen, the collapse of each members is progressed by the plastic hinge which made from bending moment, and therefore the research for the behavior of members under bending moment after collapse is necessary to determine the internal energy which the members can absorb and the deformed shapes of the members on the step of design. In this paper, the characteristics of bending collapse at the members of the open cross-section were studied with experiment and numerical analysis. We made a comparative studied of the result of the experiment, and changed the axis according to the parallel-axis theorem.