DOI QR코드

DOI QR Code

Experimental and numerical study on progressive collapse of composite steel-concrete frames

  • Jing-Xuan Wang (School of Civil Engineering, Lanzhou University of Technology) ;
  • Ya-Jun Shen (School of Civil Engineering, Dalian University of Technology) ;
  • Kan Zhou (School of Built Environment, Engineering and Computing, Leeds Beckett University, City Campus) ;
  • Yong Yang (School of Civil Engineering, Lanzhou University of Technology)
  • Received : 2022.03.23
  • Accepted : 2024.02.12
  • Published : 2024.03.10

Abstract

This paper presents an experimental investigation into the progressive collapse behavior of composite steel-concrete frames under various column removal scenarios. This study involves testing two two-bay, two-story composite frames featuring CFST columns and profiled steel decking composite slabs. Two removal scenarios, involving the corner column and middle column, are examined. The paper reports on the overall and local failure modes, vertical force-deformation responses, and strain development observed during testing. Findings indicate that structural failure initiates due to fracture and local buckling of the steel beam. Moreover, the collapse resistance and ductility of the middle column removal scenario surpass those of the corner column removal scenario. Subsequent numerical analysis reveals the significant contribution of the composite slab to collapse resistance and capacity. Additionally, it is found that horizontal boundary conditions notably influence the collapse resistance in the middle column removal scenario only. Finally, the paper proposes a simplified calculation method for collapse resistance, which yields satisfactory predictions.

Keywords

Acknowledgement

The authors acknowledge the financial support from the National Natural Science Foundation of China (Grant Nos: 52368021 and 52068047), the Lanzhou Youth Science and Technology Talent Innovation Project (Grant No: 2023-QN-40) and the Hong Liu Jie Qing Talent Support Program Project of Lanzhou University of Technology.

References

  1. Adam, J.M., Buitrago, M. and Bertolesi, E. (2020), "Dynamic performance of a real-scale reinforced concrete building test under a corner-column failure scenario", Eng. Struct., 210, 110414. https://doi.org/10.1016/j.engstruct.2020.110414.
  2. Adam, J.M., Parisi, F., Sagaseta, J. and Lu X.Z. (2018), "Research and practice on progressive collapse and robustness of building structures in the 21st century", Eng. Struct., 173, 122-149. https://doi.org/10.1016/j.engstruct.2018.06.082.
  3. Almusallam, T.H., Al-Salloum, Y, Ngo, T.D. and Mendis P. (2017), "Experimental investigation of progressive collapse potential of ordinary and special moment-resisting reinforced concrete frames", Mater Struct., 50(2), 1-16. https://doi.org/10.1617/s11527-017-1014-x.
  4. Almusallam, T.H., Elsanadedy, H.M., Al-Salloum, Y. and Siddiqui, N.A. (2018), "Experimental investigation on vulnerability of precast RC beam-column joints to progressive collapse", KSCE J Civ Eng., 22(10), 3995-4010. https://doi.org/10.1007/s12205-018-1518-0.
  5. Al-Salloum, Y., Alrubaidi, M.A., Elsanadedy, H.M. and Almusallam, T. (2018), "Strengthening of precast RC beam-column connections for progressive collapse mitigation using bolted steel plates", Eng. Struct., 161, 146-160. https://doi.org/10.1016/j.engstruct.2018.02.009.
  6. ASCE/SEI (2010), Minimum Design Loads for Buildings and Other Structures. American Society of Civil Engineers, Washington DC, USA.
  7. Campione, G. (2021), "Effect of progressive collapse of central column on the push-down response of two-span beam-column substructures", Eng. Struct., 248, 113119. https://doi.org/10.1016/j.engstruct.2021.113119.
  8. CECS 392-2021(2021), Standard for Anti-Collapse Design of Building Structures. China Planning Press, Beijing, China.
  9. Chen, K. and Tan, K.H. (2020), "Structural behavior of composite moment-resisting joints under column-removal scenario", J. Struct. Eng., 146(3), 04019226. https://doi.org/10.1061/(ASCE)ST. 1943-541X. 0002518.
  10. Demonceau, J.F. and Jaspart, J.P. (2010), "Experimental test simulating a column loss in a composite frame", Adv Steel Constr, 6(3), 891-913. https://doi.org/10.1142/S0578563410002166.
  11. Diao, M.Z., Li, Y., Guan, H., Lu, X.Z. and Gilbert, B.P. (2020), "Influence of horizontal restraints on the behavior of vertical disproportionate collapse of RC moment frames", Eng Fail Anal., 109, 104324. https://doi.org/10.1016/j.engfailanal.2019.104324.
  12. DoD (Department of Defense) (2016), Design of Buildings to Resist Progressive Collapse. Unified facilities criteria (UFC). Washington DC, USA.
  13. Esmaeily, A. and Xiao, Y. (2005), "Behavior of reinforced concrete columns under variable axial loads: analysis", ACI Struct J., 102(5), 736-744. https://doi.org/10.1109/ICMENS.2004. 1509040.
  14. Gao, S., Guo, L.H. and Zhang, Z. (2021), "Anti-collapse performance of composite frame with special-shaped MCFST columns", Eng. Struct., 245, 112917. https://doi.org/10.1016/j.engstruct. 2021.112917.
  15. Gao, S., Xu, M., Fu, F. and Guo, L.H. (2019), "Performance of bolted steel-beam to CFST-column joints using stiffened angles in column-removal scenario", J. Constr. Steel Res., 159, 459-475. https://doi.org/10.1016/j.jcsr.2019.05.011.
  16. GB228-2002 (2002), Metallic Materials Tensile Testing Method of Test at Ambient Temperature. China Standard Press, Beijing, China.
  17. GB50010-2010 (2010), Code for Design of Concrete Structures. Ministry of Construction of China, Beijing, China.
  18. Gruben, G., Fagerholt, E., Hopperatad, O.S. and Borvik, T. (2011), "Fracture characteristics of a cold-rolled dual-phase steel", Eur J Mech A-solid., 30(3), 204-218. https://doi.org/10.1016/j.euromechsol.2011.01.004.
  19. GSA (General Service Administration) (2013), Alternate Path Analysis & Design Guidelines for Progressive Collapse Resistance, General Services Administration, Washington (DC), USA.
  20. Han, L.H. (2016), Concrete Filled Steel Tubular Structures - Theory and Practice, Science Press, Beijing, China.
  21. Kang, S.B., Tan, K.H., Liu, H.Y., Zhou, X.H. and Yang, B. (2017), "Effect of boundary conditions on the behaviour of composite frames against progressive collapse", J. Constr. Steel Res., 138, 150-167. https://doi.org/10.1016/j.jcsr.2017.07.005.
  22. Kong, D.Y., Yang, B., Elchalakani, M., Chen, K. and Ren, L.M. (2020), "Progressive collapse resistance of 3D composite slab system subjected to internal column removal: Experimental and numerical simulation", J. Constr. Steel Res., 172, 106208. https://doi.org/10.1016/j.jcsr.2020.106208.
  23. Lew, H.S., Main, J.A., Robert, S.D., Sadek, F. and Chiarito, V.P. (2013), "Performance of steel moment connections under a column removal scenario. I: Experiments", J. Struct. Eng., 139(1), 98-107. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000618.
  24. Lu, X.Z., Lin, K.Q., Li, Y., Guan, H., Ren, P.Q. and Zhou, Y.L. (2017), "Experimental investigation of RC beam-slab substructures against progressive collapse subject to an edge-column removal scenario", Eng. Struct., 149, 91-103. https://doi.org/10.1016/j.engstruct.2016.07.039.
  25. Lu, X.Z., Zhang, L., Lin, K.Q. and Li, Y. (2019), "Improvement to composite frame systems for seismic and progressive collapse resistance", Eng. Struct., 186, 227-242. https://doi.org/10.1016/j.engstruct.2019.02.006.
  26. Ma, F., Gilbert, B.P., Guan, H., Lu X.Z. and Li, Y. (2019), "Experimental study on the progressive collapse behavior of RC flat plate substructures subjected to corner column removal scenarios", Eng. Struct., 180, 728-741. https://doi.org/10.1016/j.engstruct. 2020.110299.
  27. Meng, B., Li, L.D., Zhong, W.H., Tan, Z. and Zheng, Y.H. (2021), "Anti-collapse performance analysis of unequal span steel-concrete composite substructures", Steel Compos. Struct., 39(4), 383-399. https://doi.org/10.12989/scs.2021.39.4.000.
  28. Pham, A.T., Lim, N.S. and Tan, K.H. (2017), "Investigations of tensile membrane action in beam-slab systems under progressive collapse subject to different loading configurations and boundary conditions", Eng. Struct., 150, 520-536. https://doi.org/10.1016/j.engstruct.2017.07.060.
  29. Qian, K., Lan, X., Li, Z., Li, Y. and Fu, F. (2020), "Progressive collapse resistance of two-story seismic configured steel sub-frames using welded connections", J. Constr. Steel Res. 170, 106117. https://doi.org/10.1016/j.jcsr.2020.106117.
  30. Wang, J.J., Wang, W., Bao, Y.H. and Lehman, D. (2019), "Full-scale test of a steel moment-resisting frame with composite slab under a penultimate edge column removal scenario", J. Constr. Steel Res., 162, 1-13. https://doi.org/10.1016/j.jcsr.2019.105717.
  31. Wang, J.X., Yang, Y., Xian, W. and Li, Q.Y. (2020), "Progressive collapse mechanism analysis of concrete-filled square steel tubular column to steel beam joint with bolted-welded hybrid connection", Int J Steel Struct, 20(5), 1618-1635. https://doi.org/10.1007/s13296-020-00397-3.
  32. Wang, J.X., Shen, Y.J., Gao, S. and Wang, W.D., (2022), "Anti-collapse performance of concrete-filled steel tubular composite frame with assembled tensile steel brace under middle column removal", Eng. Struct., 266, 114635. https://doi.org/10.1016/j.engstruct.2022.114635.
  33. Wang, W., Fang, C., Qin, X., Chen, Y.Y. and Li, B. (2016), "Performance of practical beam-to-SHS column connections against progressive collapse", Eng. Struct., 106, 332-347. https://doi.org/10.1016/j.engstruct.2015.10.040.
  34. Wang, W.D., Zheng, L. and Li, H.W. (2020), "Experimental investigation of composite joints with concrete-filled steel tubular column under column removal scenario", Eng. Struct., 219, 110956. https://doi.org/10.1016/j.engstruct.2020.110956.
  35. Yang, B., Tan, K.H., Xiong, G. and Nie, S.D. (2016), "Experimental study about composite frames under an internal column-removal scenario", J. Constr. Steel Res., 121, 341-351. https://doi.org/10.1016/j.jcsr.2016.03.001.
  36. Yang, X.J., Lin. F. and Gu. X.L. (2021), "Experimental study on a novel method to improve progressive collapse resistance of RC frames using locally debonded rebars", J. Struct. Eng., 41, 102428. https://doi.org/10.1016/j.jobe.2021.102428.
  37. Zandonini, R., Baldassino, N., Freddi, F. and Roversoa, G. (2019), "Steel-concrete frames under the column loss scenario: An experimental study", J. Constr. Steel Res., 162, 105527.1-105527.21. https://doi.org/10.1016/j.jcsr.2019.02.036.
  38. Zhong, W.H., Tan Z., Tian, L.M., Meng, B. and Zheng, Y.H. (2020), "Collapse resistance of composite beam-column assemblies with unequal spans under an internal column-removal scenario", Eng. Struct., 206, 110143. https://doi.org/10.1016/j.engstruct.2019.110143.
  39. Zhu, Y.F., Chen, C.H., Huang, Y., Huang, Z.H., Yao, Y. and Keer, L.M. (2021), "Component-based model for posttensioned steel connections against progressive collapse", Steel Compos. Struct., 40(4), 481-493. https://doi.org/10.12989/scs. 2021.40.4.481.