• 제목/요약/키워드: Collapse Strength

검색결과 457건 처리시간 0.024초

파이프 골조 온실의 조립 연결구 내력 시험 (Experimental Analysis on Yield Strength of Pipe Connectors and Joints for Pipe Framed Greenhouses)

  • 남상운
    • 한국농공학회지
    • /
    • 제43권6호
    • /
    • pp.113-119
    • /
    • 2001
  • Experiments on the yield strength of pipe connectors made of metal wire, joint pins, pole pipes, multi span insertion joints, and T-clamp joints used in pipe houses were conducted. The strength of connections of a pipe connector made of metal wire was adequate but it had a big difference according to loading direction. Therefore as it is installed, its direction should be taken into consideration. The collapse load of pipes connected with a joint pin was lower than that of single pipes. In the part of frame member at which the great bending moment occurs, the use of joint pin should be avoided. Also experimental results showed that pole pipes for use in a part of frame buried under the ground were safe, and the strength of multi span insertion joints should be increased. The resistant moment of T-clamp was about 13.7% of a single pipe. In case that the external forces acting on left and right rafter are different. a unsymmetrical rotational force is produced at the multi span joint. If it is expected that the actual bending moment on the multi span joint is larger than resistant moment of T-clamp, a reinforcement to safely resist the rotational force is required.

  • PDF

폐 벤토나이트 분말을 흔입한 모르터의 강도 발현 특성에 관한 실험적 연구 (An Experimental Study on the Strength-Development Properties of Mortar with Discarded Bentonite Powder)

  • 정민수;김효열;안재철;강병희
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2003년도 학술.기술논문발표회
    • /
    • pp.23.2-29
    • /
    • 2003
  • As the bentonite is main material to prevent from collapse of drilling hole at underground excavation works, the quantity of bentonite is increasingly used on construction industry day by day. But, the discarded bentonite that is excessively used at underground excavation works causes various environmental trouble such as soil and water pollution etc. Therefore, this study aims to propose a foundamental report about pozzolan reaction of discarded Bentonite powder by heat-treatment and cooling as concrete mineral admixture. To find out the strength-development properties of mortar with discarded Bentonite powder by indirect cooling & cooling using of water after heat-treatment, the experiments such as flow test, and compressive strength test on curing age of mortar are excuted. As a result of this study, discarded Bentonite powder can be utilized as concrete mineral admixture by heat-treatment and especially, the strength-development properties of mortar mixing with discarded Bentonite powder is superior to the situation of $600^{\circ}C$.60min-cooling using of water.

  • PDF

대형 유조선 충돌 시 2차사고 방지를 위한 잔류강도 예측 기법 개발 (Development of a Method for Prediction of Residual Strength for Prevention of Secondary Accidents on Large Oil Tankers Subjected to Collisions)

  • 백승준;손정민;백점기;김상진
    • 대한조선학회논문집
    • /
    • 제55권2호
    • /
    • pp.144-152
    • /
    • 2018
  • This study aims to establish a mathematical formula to provide rapid and safety estimation of the damaged double hull tankers under ship-ship collision. Difference in heights between the striking and struck ships 'h' and penetration depth 'x' were considered as the main parameters. In ship-ship interaction, Large oil tankers are selected as target struck vessels, and they are struck by Very Large Crude-Oil Carrier (VLCC) class oil tanker. The residual strength of damaged ship at several locations and collision scenarios were carried out using Intelligent Supersize Finite Element Method (ISFEM) which considers the progressive collapse behavior of ship hulls strength. Based on these results, satisfactory was achieved and empirical formula was successfully established using the regression analysis method by deploying the height difference 'h' and penetration depth 'x' as the observed parameters.

증기압 및 크리프 모델을 사용한 고강도콘크리트 부재의 내화성능평가 (Fire Resistance Behaviour of High Strength Concrete Members with Vapor Pressure and Creep Models)

  • 이태규
    • 한국화재소방학회논문지
    • /
    • 제24권4호
    • /
    • pp.33-40
    • /
    • 2010
  • 본 연구는 고강도 콘크리트 부재의 고온 하에서의 내화성능을 평가하기 위하여 증기압 및 크리프를 고려한 해석적 모델들을 제시하였다. 내화성능의 평가는 열팽창, 수분확산, 크리프 모델 및 구조해석을 통하여 폭렬진행과 내화시간의 2가지 단계로 구분하였으며, 해석프로그램을 사용하여 사전재하조건에서부터 화재에 따른 부재의 폭렬 및 파괴까지의 전반적인 해석을 수행하였다. 이러한 해석적 모델 및 해석프로그램의 정확성을 검증하기 위하여 해석적 결과와 다른 연구자들에 의한 여러 가지의 실험데이터와 비교하였으며, 그 결과 해석프로그램은 하중, 단면조건, 부재길이, 콘크리트 강도 등 여러 가지 변수들에 대하여 고강도 콘크리트 부재의 내화성능을 해석적으로 잘 평가하고 있는 것으로 나타나고 있다.

건조선 통계자료를 이용한 선박 판부재의 최종강도 간이추정 (Simplified Estimation of the Ultimate Strength of Ship Panels using Statistical Data of Actual Ships)

  • 김외현;함주혁;김을년
    • 대한조선학회논문집
    • /
    • 제30권4호
    • /
    • pp.127-135
    • /
    • 1993
  • 정확성과 단순성의 균형을 유지하면서 선박의 강도평가에 쉽게 적용할 수 있는 평판의 최종강도 간이추정식들을 도출하였다. 당 조선소의 건조선들 중 유조선과 산적화물선에 대한 선저부와 상갑판의 최종강도에 관련된 기하학적 변수들의 통계자료를 분석하여 구조특성을 살펴보고, 강도에 영향을 미치는 주요인수를 중심으로 하여 나머지 영향인자들을 확률분포에 따라 가중시켜 선종별로 평판의 최종강도 추정식을 제시하였다. 또한 저자들에[3-5] 의해 이미 제시된 새로운 좌굴평가식을 바탕으로 좌굴후거동에서 판의 중앙단부의 항복조건을 결부시켜 또하나의 최종강도 추정식을 제시하였다. 본 논문에서 제시한 간이식의 정확도를 실험식과 기존의 식[6, 7, 9]들과 비교 확인하였다.

  • PDF

Experimental performance of Y-shaped eccentrically braced frames fabricated with high strength steel

  • Lian, Ming;Su, Mingzhou;Guo, Yan
    • Steel and Composite Structures
    • /
    • 제24권4호
    • /
    • pp.441-453
    • /
    • 2017
  • In Y-shaped eccentrically braced frame fabricated with high strength steel (Y-HSS-EBF), link uses conventional steel while other structural members use high strength steel. Cyclic test for a 1:2 length scaled one-bay and one-story Y-HSS-EBF specimen and shake table test for a 1:2 length scaled three-story Y-HSS-EBF specimen were carried out to research the seismic performance of Y-HSS-EBF. These include the failure mode, load-bearing capacity, ductility, energy dissipation capacity, dynamic properties, acceleration responses, displacement responses, and dynamic strain responses. The test results indicated that the one-bay and one-story Y-HSS-EBF specimen had good load-bearing capacity and ductility capacity. The three-story specimen cumulative structural damage and deformation increased, while its stiffness decreased. There was no plastic deformation observed in the braces, beams, or columns in the three-story Y-HSS-EBF specimen, and there was no danger of collapse during the seismic loads. The designed shear link dissipated the energy via shear deformation during the seismic loads. When the specimen was fractured, the maximum link plastic rotation angle was higher than 0.08 rad for the shear link in AISC341-10. The Y-HSS-EBF is a safe dual system with reliable hysteretic behaviors and seismic performance.

Mechanical behavior of composite gel periodic structures with the pattern transformation

  • Hu, Jianying;He, Yuhao;Lei, Jincheng;Liu, Zishun;Swaddiwudhipong, Somsak
    • Structural Engineering and Mechanics
    • /
    • 제50권5호
    • /
    • pp.605-616
    • /
    • 2014
  • When the periodic cellular structure is loaded or swelling beyond the critical value, the structure may undergo a pattern transformation owing to the local elastic instabilities, thus leading to structural collapse and the structure changing to a new configuration. Based on this deformation-triggered pattern, we have proposed the novel composite gel materials. This designed material is a type of architectural material possessing special mechanical properties. In this study, the mechanical behavior of the composite gel periodic structure with various gel inclusions is studied further through numerical simulations. When pattern transformation occurs, it results in a different elastic relationship compared with the material at untransformed state. Based on the obtained nominal stress versus nominal strain behavior, the Poisson's ratio and corresponding deformed structure patterns, we investigate the performance of designed composite materials and the effects of the uniformly distributed gel inclusions on composite materials. A better understanding of the characteristics of these composite gel materials is a key to develop its potential applications on new soft machines.

Residual ultimate strength of a very large crude carrier considering probabilistic damage extents

  • Choung, Joonmo;Nam, Ji-Myung;Tayyar, Gokhan Tansel
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권1호
    • /
    • pp.14-26
    • /
    • 2014
  • This paper provides the prediction of ultimate longitudinal strengths of the hull girders of a very large crude carrier considering probabilistic damage extent due to collision and grounding accidents based on IMO Guidelines (2003). The probabilistic density functions of damage extent are expressed as a function of non-dimensional damage variables. The accumulated probabilistic levels of 10%, 30%, 50%, and 70% are taken into account for the estimation of damage extent. The ultimate strengths have been calculated using the in-house software called Ultimate Moment Analysis of Damaged Ships which is based on the progressive collapse method, with a new convergence criterion of force vector equilibrium. Damage indices are provided for several probable heeling angles from $0^{\circ}$ (sagging) to $180^{\circ}$ (hogging) due to collision- and grounding-induced structural failures and consequent flooding of compartments. This paper proves from the residual strength analyses that the second moment of area of a damage section can be a reliable index for the estimation of the residual ultimate strength. A simple polynomial formula is also proposed based on minimum residual ultimate strengths.

수동화재보호 재료가 적용된 구조부재의 화재하중에 대한 강도 특성 (Strength Characteristics of Passive Fire Protection Material Applied Structural Members on Fire Load)

  • 조상찬;유승수;서정관
    • 대한조선학회논문집
    • /
    • 제59권1호
    • /
    • pp.29-38
    • /
    • 2022
  • In offshore installations, fires cause the structure to lose its rigidity and it leads to structural integrity and stability problems. The Passive Fire Protection (PFP) system slows the transfer rate of fire heat and helps prevent the collapse of structures and fatality. Especially, intumescent epoxy coating is widely used in the offshore industry, and not only is the material cost expensive, but it also takes a lot of time and cost for construction. Several studies have been conducted on the efficient application and optimal design of the PFP system. However, the mechanical properties and the strength of the PFP material have not been considered. In addition, researches on the correlation between the thickness of PFP and the structural behavior were insufficient. Therefore, this study aims to analyze the thermal and mechanical effects of the PFP on the structure when it is applied to the structural member. In particular, it is intended to resolve the change in strength characteristics of the structural members as the thickness of the PFP increases.

비소성 황토 콘크리트의 거푸집 탈형 시점 검토를 위한 초음파속도와 강도의 상관관계 회귀 분석 (Regression analysis of the correlation between ultrasonic pulse velocity and strength to examine the demoulding time of non-sintered hwangto concrete)

  • 남영진;김원창;류정림;최희용;최형길;이태규
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 가을학술발표대회논문집
    • /
    • pp.159-160
    • /
    • 2023
  • Recently, interest in reducing cement has been growing. Hwangto, an eco-friendly material, has advantages such as air purification effect and humidity control, but when used, accidents such as form collapse may occur due to low strength and reduced durability. In order to quantitatively evaluate the timing of mold demolding, we would like to evaluate the timing of mold demolding through correlation with compressive strength using ultrasonic pulse velocity. As a result, the time at which 5 MPa is developed is after 20 hours for the test specimen of W/B 41 , in the case of W/B 33, NC33 and HTC33-15 were equally expressed at 12 hours, and HTC33-30 was expressed at 16 hours.

  • PDF