• 제목/요약/키워드: Collapse Strength

검색결과 456건 처리시간 0.024초

농산촌 재난대피시설 제작을 위한 FRP 부재의 강도특성에 관한 연구 (A Study on the Strength Properties of FRP Member for Making Personal Disaster Shelters in Rural Area)

  • 김정면;황대원;임현택;박성용;연규석;김용성
    • 한국농공학회논문집
    • /
    • 제58권2호
    • /
    • pp.73-82
    • /
    • 2016
  • This study is about development of personal disaster shelters for minimization of the casualties caused by the landslide and steep slope collapse. The objectives of present research is the selection of disaster evacuation facilities utilizing FRP (Fiber Reinforced Plastic) material. For the proper assessment of FRP member, several layers by strength test and the three-dimensional numerical analysis of these FRR member was carried out. As a result, the personal disaster evacuation facility utilizing FRP materials, was found to be of a material that is able to protect the weak person at the time of the collapse of the landslides and steep slopes.

강우로 인한 보강토옹벽의 붕괴사례 연구 (A Case Study in a Rainfall induced Failure of Geosynthetics-Reinforced Segmental Retaining Wall)

  • 유충식;정혜영;정혁상
    • 한국지반신소재학회논문집
    • /
    • 제4권1호
    • /
    • pp.17-25
    • /
    • 2005
  • 본 논문에서는 옹벽 시공 완료 후 여름철 집중강우로 인해 붕괴된 보강토 옹벽 사고사례에 대한 원인 분석을 실시하였다. 사고 원인의 명확한 규명을 위해 붕괴된 옹벽의 현장조사 및 실내시험, 현 설계법에 근거한 안정성평가, 강우의 침투해석 및 suction을 고려한 사면안정해석을 실시하였고, 그 결과 현장조건을 제대로 반영하지 못한 부적합한 설계와 불량한 뒤채움 흙의 사용, 단기간의 집중호우로 인한 suction의 감소 및 전단강도의 감소가 붕괴의 주원인인 것으로 나타났다.

  • PDF

지열정 안정화를 위한 케이싱 설계에 대한 해석적 연구 (An Analytical Study on Casing Design for Stabilization of Geothermal Well)

  • 이은지;전용석;김용찬;전종욱
    • 설비공학논문집
    • /
    • 제24권11호
    • /
    • pp.784-791
    • /
    • 2012
  • The casing has been used as a protective conduit during all phases of drilling operations and productions for the oil and gas industries. The casing is manufactured in various diameters, wall thicknesses, lengths, strengths, and connections. When the casing is designed, it has to be considered to withstand a variety of forces, such as collapse, burst, and tensile failure, as well as chemically aggressive brines. Once the casing is damaged, serious problems in geothermal well have been detected continuously. Therefore, this paper describes the casing design for stability of geothermal well to determine influence of casing parameters on the strength and load. In addition, the casing design program was developed. The estimated collapse, burst, tension and depth pressure can provide benefit in the casing design and completion method. This program provides a safety factor and predicts the casing stress more easily.

Engineering implications of the RC building damages after 2011 Van Earthquakes

  • Ozmen, Hayri Baytan;Inel, Mehmet;Cayci, Bayram Tanik
    • Earthquakes and Structures
    • /
    • 제5권3호
    • /
    • pp.297-319
    • /
    • 2013
  • Two destructive earthquakes occurred on October 23 and November 9, 2011 in Van province of Turkey. The damage in residential units shows significant deviation from the expectation of decreasing damage with increasing distance to epicenter. The most damaged settlement Ercis has the same distance to the epicenter with Muradiye, where no damage occurred while relatively less damage observed in Van having half distance. These three cities seem to have resembling soil conditions. If the damages are evaluated: joint failures and insufficient lap splice lengths are observed to be the main causes of the total collapses in RC buildings. Additionally, low concrete strength, reinforcement detailing mistakes, soft story, heavy overhang, pounding and short columns are among other damage reasons. Examples of damages due to non-structural elements are also given. Remarkable points about seismic damages are: collapsed buildings with shear-walls, heavily damaged buildings despite adequate concrete strength due to detailing mistakes, undamaged two-story adobe buildings close to totally collapsed RC ones and undamaged structural system in buildings with heavily damaged non-structural elements. On the contrary of the common belief that buildings with shear-walls are immune to total collapse among civil engineers, collapse of Gedikbulak primary school is a noteworthy example.

보 요소와 비선형 스프링 특성을 이용한 버스 전복 해석 (Rollover Analysis of a Bus using Beam Element and Nonlinear Spring Characteristics)

  • 박수진;유완석;권연주;김진배
    • 한국자동차공학회논문집
    • /
    • 제15권1호
    • /
    • pp.56-63
    • /
    • 2007
  • In case of bus rollover, the body structure of the bus should be designed to ensure the survival space for passengers. So, this study focuses on evaluating rollover strength through a computer simulation using the commercial code, LS-DYNA3D at the initial stage of vehicle development. For this study, section structure was modeled using a simple beam element, and impact boundary conditions required by ECE(Economic Commission for Europe) regulation No.66 were applied. In order to confirm the validity of the beam element bus model, the results compared with the test results and shell element bus model. The analysis errors from beam element bus model are due to the difference in strain energy of joint area between beam and shell model. In this study, a method for the joint modeling was suggested by using nonlinear springs to which the collapse mechanisms were applied.

Influence of strong ground motion duration on reinforced concrete walls

  • Flores, Camilo;Bazaez, Ramiro;Lopez, Alvaro
    • Earthquakes and Structures
    • /
    • 제21권5호
    • /
    • pp.477-487
    • /
    • 2021
  • This study focuses on the influence of strong ground motion duration on the response and collapse probability of reinforced concrete walls with a predominant response in flexure. Walls with different height and mass were used to account for a broad spectrum of configurations and fundamental periods. The walls were designed following the specifications of the Chilean design code. Non-linear models of the reinforced concrete walls using a distributed plasticity approach were performed in OpenSees and calibrated with experimental data. Special attention was put on modeling strength and stiffness degradation. The effect of duration was isolated using spectrally equivalent ground motions of long and short duration. In order to assess the behavior of the RC shear walls, incremental dynamic analyses (IDA) were performed, and fragility curves were obtained using cumulative and non-cumulative engineering demand parameters. The spectral acceleration at the fundamental period of the wall was used as the intensity measure (IM) for the IDAs. The results show that the long duration ground motion set decreases the average collapse capacity in walls of medium and long periods compared to the results using the short duration set. Also, it was found that a lower median intensity is required to achieve moderate damage states in the same medium and long period wall models. Finally, strength and stiffness degradation are important modelling parameters and if they are not included, the damage in reinforced concrete walls may be greatly underestimated.

Causes of local collapse of a precast industrial roof after a fire

  • Bruno Dal Lago;Paride Tucci
    • Computers and Concrete
    • /
    • 제31권5호
    • /
    • pp.371-384
    • /
    • 2023
  • Precast roofing systems employing prestressed elements often serve as smart structural solutions for the construction of industrial buildings. The precast concrete elements usually employed are highly engineered, and often consist in thin-walled members, characterised by a complex behaviour in fire. The present study was carried out after a fire event damaged a precast industrial building made with prestressed beam and roof elements, and non-prestressed curved barrel vault elements interposed in between the spaced roof elements. As a consequence of the exposure to the fire, the main elements were found standing, although some locally damaged and distorted, and the local collapse of few curved barrel vault elements was observed in one edge row only. In order to understand and interpret the observed structural performance of the roof system under fire, a full fire safety engineering process was carried out according to the following steps: (a) realistic temperature-time curves acting on the structural elements were simulated through computational fluid dynamics, (b) temperature distribution within the concrete elements was obtained with non-linear thermal analysis in variable regime, (c) strength and deformation of the concrete elements were checked with non-linear thermal-mechanical analysis. The analysis of the results allowed to identify the causes of the local collapses occurred, attributable to the distortion caused by temperature to the elements causing loss of support in early fire stage rather than to the material strength reduction due to the progressive exposure of the elements to fire. Finally, practical hints are provided to avoid such a phenomenon to occur when designing similar structures.

보 붕괴형 메커니즘을 가지는 강구조 다층골조의 손상분포 (Damage Distribution Rule of Weak Beam Type Multi-Story Steel Frames Influenced by Strength and Stiffness Ratios of Beam and Column)

  • 오상훈;유홍식;문태섭
    • 한국지진공학회논문집
    • /
    • 제9권5호
    • /
    • pp.53-61
    • /
    • 2005
  • 부재의 내력비, 강성비에 영향을 받는 다층 강구조 골조의 내진성능을 평가하기 위하여 내력비 및 강성비를 설계 파라메타로 하여 동적 비탄성 응답해석을 수행하였다. 해석 결과에 대한 분석을 통하여 내력비와 강성비의 변화폭이 큰 다층골조의 손상분포 예측식을 제안하였다. 본 연구에서 얻어진 결과는 다음과 같이 요약할 수 있다. 1) 보기둥 내력비 및 강성비가 작아질수록 1층의 기둥 주각부에서의 손상집중 현상이 크게 나타났다. 2) 보기둥 내력비 및 강성비를 고려하여 보붕괴형 강구조 다층골조의 손상분포를 예측할 수 있는 식을 제안하였으며, 예측식은 응답해석 결과와 좋은 대응을 보였다. 3) 본 연구에서 제안한 손상분포 예측식은 강접 및 반강접 보붕괴형 강구조 다층골조의 손상분포를 예측할 수 있을 것으로 판단된다.

하이브리드 슈퍼코팅(HSC)과 유리섬유를 통한 조적조 내진보강 연구 (Experimental Study of Hybrid Super Coating (HSC) and Cast Reinforcement for Masonry Wall)

  • 이가윤;문아해;이승준;김재현;이기학
    • 한국지진공학회논문집
    • /
    • 제25권5호
    • /
    • pp.213-221
    • /
    • 2021
  • Many Korean domestic masonry structures constructed since 1970 have been found to be vulnerable to earthquakes because they lack efficient lateral force resistance. Many studies have shown that the brick and mortar suddenly experience brittle fracture and out-of-plane collapse when they reach the inelastic range. This study evaluated the seismic retrofitting of non-reinforced masonry with Hybrid Super Coating (HSC) and Cast, manufactured using glass fiber. Four types of specimen original specimen (BR-OR), one layered HSC (BR-HS-O), two-layered HSC (BR-HS-B), one layered HSC, and Cast (BR-CT-HS-O) were constructed and analyzed using compression, flexural tensile, diagonal compression, and triplet tests. The specimen responses were presented and discussed in load-displacement curves, maximum strength, and crack propagation. The compressive strength of the retrofit specimens slightly increased, while the flexural tensile strength of the retrofit specimens increased significantly. In addition, the HSC and Cast also produced a considerable increase in the ductile response of specimens before failure. Diagonal compression test results showed that HSC delayed brittle cracks between the mortar and bricks and resulted in larger displacement before failure than the original brick. The triplet test results confirmed that the bonding strength of the retrofit specimens also increased. The application of HSC and Cast was found to restrain the occurrence of brittle failure effectively and delayed the collapse of masonry wall structures.

A Simplified Procedure for Performance-Based Design

  • Zareian, Farzin;Krawinkler, Helmut
    • 한국지진공학회논문집
    • /
    • 제11권4호
    • /
    • pp.13-23
    • /
    • 2007
  • This paper focuses on providing a practical approach for decision making in Performance-Based Design (PBD). Satisfactory performance is defined by several performance objectives that place limits on direct (monetary) loss and on a tolerable probability of collapse. No specific limits are placed on conventional engineering parameters such as forces or deformations, although it is assumed that sound capacity design principles are followed in the design process. The proposed design procedure incorporates different performance objectives up front, before the structural system is created, and assists engineers in making informed decisions on the choice of an effective structural system and its stiffness (period), base shear strength, and other important global structural parameters. The tools needed to implement this design process are (1) hazard curves for a specific ground motion intensity measure, (2) mean loss curves for structural and nonstructural subsystems, (3) structural response curves that relate, for different structural systems, a ground motion intensity measure to the engineering demand parameter (e.g., interstory drift or floor acceleration) on which the subsystem loss depends, and (4) collapse fragility curves. Since the proposed procedure facilitates decision making in the conceptual design process, it is referred to as a Design Decision Support System, DDSS. Implementation of the DDSS is illustrated in an example to demonstrate its practicality.