• Title/Summary/Keyword: Collapse Moment

Search Result 242, Processing Time 0.027 seconds

Behavior of multi-story steel buildings under dynamic column loss scenarios

  • Hoffman, Seth T.;Fahnestock, Larry A.
    • Steel and Composite Structures
    • /
    • v.11 no.2
    • /
    • pp.149-168
    • /
    • 2011
  • This paper presents a computational study of column loss scenarios for typical multi-story steel buildings with perimeter moment frames and composite steel-concrete floors. Two prototype buildings (three-story and ten-story) were represented using three-dimensional nonlinear finite element models and explicit dynamic analysis was used to simulate instantaneous loss of a first-story column. Twelve individual column loss scenarios were investigated in the three-story building and four in the ten-story building. This study provides insight into: three-dimensional load redistribution patterns; demands on the steel deck, concrete slab, connections and members; and the impact of framing configuration, building height and column loss location. In the dynamic simulations, demands were least severe for perimeter columns within a moment frame, but the structures also exhibited significant load redistribution for interior column loss scenarios that had no moment connectivity. Composite action was observed to be an important load redistribution mechanism following column loss and the concrete slab and steel deck were subjected to high localized stresses as a result of the composite action. In general, the steel buildings that were evaluated in this study demonstrated appreciable robustness.

Experimental and analytical study in determining the seismic performance of the ELBRF-E and ELBRF-B braced frames

  • Jouneghani, Habib Ghasemi;Haghollahi, Abbas
    • Steel and Composite Structures
    • /
    • v.37 no.5
    • /
    • pp.571-587
    • /
    • 2020
  • In this article the seismic demand and performance of two recent braced steel frames named steel moment frames with the elliptic bracing (ELBRFs) are assessed through a laboratory program and numerical analyses of FEM. Here, one of the specimens is without connecting bracket from the corner of the frame to the elliptic brace (ELBRF-E), while the other is with the connecting brackets (ELBRF-B). In both the elliptic braced moment resisting frames (ELBRFs), in addition to not having any opening space problem in the bracing systems when installed in the surrounding frames, they improve structure's behavior. The experimental test is run on ½ scale single-story single-bay ELBRF specimens under cyclic quasi-static loading and compared with X-bracing and SMRF systems in one story base model. This system is of appropriate stiffness and a high ductility, with an increased response modification factor. Moreover, its energy dissipation is high. In the ELBRF bracing systems, there exists a great interval between relative deformation at the yield point and maximum relative deformation after entering the plastic region. In other words, the distance from the first plastic hinge to the collapse of the structure is fairly large. The experimental outcomes here, are in good agreement with the theoretical predictions.

Seismic Performance Evaluation According to Rotation Capacity of Connections for Intermediate Steel Moment Frames - II. Cause Evaluation and Alternative (접합부 회전성능에 따른 중간 철골 모멘트 골조의 내진 성능 평가 - II 원인 평가 및 대안)

  • Moon, Ki Hoon;Han, Sang Whan;Ha, Seung Jin
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.105-115
    • /
    • 2014
  • This paper is the sequel of a companion paper (I. Performance Evaluation) evaluating the relation between the seismic performance of steel intermediate moment frames (IMFs) and the rotation capacity of connections. The evaluation revealed that the seismic performance of IMFs having the required minimum rotation capacity suggested in the current standards did not meet the seismic performance criteria presented in FEMA 695. Therefore, thepresent study evaluates the causes of the vulnerable seismic performance for steel IMFs and proposes alternatives to satisfy the seismic performance suggested in FEMA 695. To that goal, the results of nonlinear analysis, which are the pushover analysis and the incremental dynamic analysis, are examined and evaluated. As a result, high-rise IMF systems are seen to have the lower collapse margin ratio after connection fracture than row-rise IMF systems and, the actual response isfound to compared tothedesign drift ratio acting on design load design. Finally, the minimum design load values are proposed to meet the seismic performance suggested in FEMA 695 for IMF systems having vulnerable seismic performance.

Residual ultimate strength of a very large crude carrier considering probabilistic damage extents

  • Choung, Joonmo;Nam, Ji-Myung;Tayyar, Gokhan Tansel
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.1
    • /
    • pp.14-26
    • /
    • 2014
  • This paper provides the prediction of ultimate longitudinal strengths of the hull girders of a very large crude carrier considering probabilistic damage extent due to collision and grounding accidents based on IMO Guidelines (2003). The probabilistic density functions of damage extent are expressed as a function of non-dimensional damage variables. The accumulated probabilistic levels of 10%, 30%, 50%, and 70% are taken into account for the estimation of damage extent. The ultimate strengths have been calculated using the in-house software called Ultimate Moment Analysis of Damaged Ships which is based on the progressive collapse method, with a new convergence criterion of force vector equilibrium. Damage indices are provided for several probable heeling angles from $0^{\circ}$ (sagging) to $180^{\circ}$ (hogging) due to collision- and grounding-induced structural failures and consequent flooding of compartments. This paper proves from the residual strength analyses that the second moment of area of a damage section can be a reliable index for the estimation of the residual ultimate strength. A simple polynomial formula is also proposed based on minimum residual ultimate strengths.

Effects of freezing and thawing on retaining wall with changes in groundwater level

  • Kim, Garam;Kim, Incheol;Yun, Tae Sup;Lee, Junhwan
    • Geomechanics and Engineering
    • /
    • v.24 no.6
    • /
    • pp.531-543
    • /
    • 2021
  • Freezing and thawing of pore water within backfill can affect the stability of retaining wall as the phase change of pore water causes changes in the mechanical characteristics of backfill material. In this study, the effects of freezing and thawing on the mechanical performance of retaining wall with granular backfill were investigated for various temperature and groundwater level (GWL) conditions. The thermal and mechanical finite element analyses were performed by assigning the coefficient of lateral earth pressure according to phase change of soil for at-rest, active and passive stress states. For the at-rest condition, the mobilized lateral stress and overturning moment changed markedly during freezing and thawing. Active-state displacements for the thawed condition were larger than for the unfrozen condition whereas the effect of freezing and thawing was small for the passive condition. GWL affected significantly the lateral force and overturning moment (Mo) acting on the wall during freezing and thawing, indicating that the reduction of safety margin and wall collapse due to freezing and thawing can occur in sudden, unexpected patterns. The beneficial effect of an insulation layer between the retaining wall and the backfill in reducing the heat conduction from the wall face was also investigated and presented.

Auxiliary Reinforcement Method for Collapse of Tunnel in the Coal Shale Fractured Zone (탄질 셰일 파쇄구간에서 터널 붕락부 거동 및 보강 연구)

  • Kim, Nagyoung;Moon, Changyeul;Park, Yongseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.6
    • /
    • pp.85-95
    • /
    • 2007
  • It is difficult for seismic survey to get hold of characteristic of coal shale fractured zone and if coal shale zone did not come into contact with underground water, coal shale zone has characteristic of good strength. But in case coal shale zone is exposed by excavation or blasting to the air, strength of coal shale zone decreases in short term and weathering of coal shale zone progresses rapidly. Therefore, the prediction of tunnel collapse is not easy in the coal shale zone and the great portion of tunnel collapse takes place in a moment. From a view point of strength, after twelve hours form result of point load test strength of coal shale decreases by fifty six percent when coal shale zone come into contact with ground water. The standard reinforcement design of coal shale fractured zone was presented in the paper.

  • PDF

Development of Linear Static Alternate Path Progressive Collapse Analysis Procedure Using a Nonlinear Static Analysis Procedure (비선형정적해석 절차를 이용한 선형정적 연쇄붕괴 대체경로 해석방법 개발)

  • Kim, Jin-Koo;Park, Sae-Ro-Mi;Seo, Young-Il
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.5
    • /
    • pp.569-576
    • /
    • 2011
  • In this paper a new analysis procedure for evaluation of progressive collapse resisting capacity of a structure was proposed based on the nonlinear static analysis procedure. The proposed procedure produces analysis results identical to those obtained by the linear static analysis procedure specified in the GSA guidelines without iteration, therefore saving a lot of computation time and excluding the possibility of human errors during the procedure. To verify the validity of the proposed procedure, the two methods were applied to the analysis of a reinforced concrete moment frame and a steel braced frame subjected to loss of a first story column and the results were compared. According to the analysis results, the two methods produce identical results in the prediction of progressive collapse and the hinge formation. As iterative analysis is not required in the proposed method, significant amount of analysis time is saved in the proposed analysis procedure.

MPA-based IDA Using the Inelastic Displacement ratio, CR and the Collapse Intensity, RC (비탄성변위비와 붕괴강도비를 이용한 MPA기반의 IDA 해석법)

  • Han, Sang-Whan;Seok, Seung-Wook;Lee, Tae-Sub
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.5
    • /
    • pp.33-39
    • /
    • 2010
  • This study develops an approximate procedure for incremental dynamic analysis (IDA) using modal pushover analysis (MPA) with empirical equations of the inelastic displacement ratio ($C_R$) and the collapse strength ratio ($R_C$). By using this procedure, it is not required to conduct linear or nonlinear response history analyses of multi- or single- degree of freedom (MDF) systems. Thus, IDA curves can be effortlessly obtained. For verification of the proposed procedure, the 6-, 9- and 20-story steel moment frames are tested under an ensemble of 44 ground motions. The results show that the MPA-based IDA with empirical equations of $C_R$ and $R_C$ produced accurate IDA curves of the MDF systems. The computing time is almost negligible compared to the exact IDA using repeated nonlinear response history analysis (RHA) of a structure and the original MPA-based IDA using repeated nonlinear RHA of modal SDF systems.

Seismic design of chevron braces cupled with MRF fail safe systems

  • Longo, Alessandra;Montuori, Rosario;Piluso, Vincenzo
    • Earthquakes and Structures
    • /
    • v.8 no.5
    • /
    • pp.1215-1240
    • /
    • 2015
  • In this paper, the Theory of Plastic Mechanism Control (TPMC) is applied to the seismic design of dual systems composed by moment-resisting frames and Chevron braced frames. The application of TPMC is aimed at the design of dual systems able to guarantee, under seismic horizontal forces, the development of a collapse mechanism of global type. This design goal is of primary importance in seismic design of structures, because partial failure modes and soft-storey mechanisms have to be absolutely prevented due to the worsening of the energy dissipation capacity of structures and the resulting increase of the probability of failure during severe ground motions. With reference to the examined structural typology, diagonal and beam sections are assumed to be known quantities, because they are, respectively, designed to withstand the whole seismic actions and to withstand vertical loads and the net downward force resulting from the unbalanced axial forces acting in the diagonals. Conversely column sections are designed to assure the yielding of all the beam ends of moment-frames and the yielding and the buckling of tensile and compressed diagonals of the V-Braced part, respectively. In this work, a detailed designed example dealing with the application of TPMC to moment frame-chevron brace dual systems is provided with reference to an eight storey scheme and the design procedure is validated by means of non-linear static analyses aimed to check the actual pattern of yielding. The results of push-over analyses are compared with those obtained for the dual system designed according to Eurocode 8 provisions.

Seismic Performance Evaluation of Special Moment Steel Frames with Torsional Irregularities - I Seismic Design (비틀림 비정형을 갖는 철골특수모멘트골조의 내진성능평가 - I 내진설계)

  • Han, Sang Whan;Kim, Tae O;Ha, Seong Jin
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.5
    • /
    • pp.361-368
    • /
    • 2017
  • ASCE 7-10 defines the torsional irregular structure as the one that has large torsional responses caused by the eccentricity. The code requires that these structures should be designed abide by the torsional provisions. This study evaluates the influence of torsional provisions on the performance of the designed multiple steel moment frames with different eccentricity. In this study, 3D response history analyses are performed. The results show that the moment frame design according to the standard with torsional irregularity provisions showed larger performance as the eccentricity increased and the distribution of plastic hinges similarly to orthopedic structures.