• 제목/요약/키워드: Collaborative Recommender Systems

검색결과 203건 처리시간 0.028초

협력필터링 시스템을 위한 평가 등급 범위 기반의 예측방법 (A Rating Range-based Prediction Method for Collaborative Filtering Systems)

  • 이수정
    • 컴퓨터교육학회논문지
    • /
    • 제14권4호
    • /
    • pp.63-70
    • /
    • 2011
  • 인터넷 상에서 사용자 흥미에 부합하는 항목을 예측하여 추천해 주는 추천 시스템은 e-commerce가 발달함에 따라 다양한 분야에서 적용되어 왔다. 추천 시스템의 주요 방법인 협력 필터링은 사용자가 선호했던 항목들과 유사한 항목을 추천하거나 또는 유사한 기호의 다른 사용자가 선호했던 항목을 추천하는 것이다. 따라서 유사도의 정확한 측정과 추천한 항목의 실제 평가등급 예측은 협력 필터링의 성능을 결정하는 두가지 중요한 문제이다. 본 연구에서는 후자의 문제를 다룬다. 기존 연구에서는 평가 등급의 평균값을 기반으로 하여 실제 평가등급을 예측하였으나, 본 연구에서는 평가 등급 범위 기반의 방법을 제시하고 실험을 통해 성능을 조사하였다. 실험 결과 기존 방법에 비해 제안 방법은 평균 절대 오차에 있어서 성능이 크게 향상됨을 입증하였다.

  • PDF

추천 시스템을 위한 단계적 평가치 예측 방안 (A Stepwise Rating Prediction Method for Recommender Systems)

  • 이수정
    • 한국인터넷방송통신학회논문지
    • /
    • 제21권4호
    • /
    • pp.183-188
    • /
    • 2021
  • 협력 필터링 기반의 추천 시스템은 현재 다양한 분야의 상업용 시스템의 필수불가결한 기능으로서, 사용자들이 선호할만한 상품을 맞춤형으로 제공해 주는 유용한 서비스이다. 그러나, 사용자들의 평가 데이타가 불충분할 경우 선호상품의 예측이 부정확할 우려가 크다. 본 연구에서는 이러한 단점을 해결하기 위하여 단계적으로 상품의 평가치를 예측하는 방안을 제시한다. 각 단계에 해당하는 예측 방법의 적용 조건을 만족하지 못할 경우 다음 단계의 방법을 적용한다. 제안 방법의 성능 평가를 위해, 공개 데이터셋을 활용한 실험을 진행하였으며, 제안 방법은 여러 전통적 유사도 척도를 도입한 협력 필터링 시스템의 예측 성능과 정밀도 성능을 크게 향상시켰고, 평가데이터 희소성 해결을 위한 기존 방식들의 성능을 능가하는 결과를 보였다.

추천시스템관련 학술논문 분석 및 분류 (A Literature Review and Classification of Recommender Systems on Academic Journals)

  • 박득희;김혜경;최일영;김재경
    • 지능정보연구
    • /
    • 제17권1호
    • /
    • pp.139-152
    • /
    • 2011
  • 1990년대 중반에 협업 필터링의 출현으로 인하여 추천시스템에 관련된 연구가 늘어나게 되었다. 협업 필터링의 출현 이후 내용 기반 필터링, 협업 필터링과 내용 기반 필터링이 혼합된 하이브리드 필터링 등 새로운 기법들이 출현함으로써 2000년대에는 추천시스템의 연구가 눈에 띄게 증가하였다. 하지만 현재까지 추천시스템에 관련된 문헌들에 대한 리뷰와 분류가 체계적으로 되어있지 않다. 이와 같은 문제에 대한 해결방안으로써, 본 연구에서는 2001년부터 2010년도까지의 추천시스템에 관련된 문헌들 중 MIS Journal Ranking의 125개의 저널에서 추천시스템(Recommender system, Recommendation system), 협업 필터링(Collaborative Filtering), 내용 기반 필터링(Content based Filtering), 개인화 시스템(Personalized system) 등의 5가지 키워드로 제한하여 조사하였다. 총 37개의 저널에서 논문을 검색하였으며, 검색되어진 논문을 분석한 결과 추천시스템과 관련이 없는 논문을 제외한 총 187개의 논문을 선정하여 분석하였다. 이 연구에서는 그러나 컨퍼런스 논문, 석사, 박사학위 논문, 영어로 작성되지 않은 논문, 완성되지 않은 논문 등은 제외하였다. 본 연구에서는 187개의 논문을 분석하여 2001년부터 2010년까지의 각각의 년도 별 추천시스템의 연구에 대한 동향 분석, Journal별 추천시스템의 게재 분류, 추천시스템 어플리케이션의 사용 분야(책, 문서, 이미지, 영화, 음악, 쇼핑, TV 프로그램, 기타)별 분류 및 분석, 추천시스템에 사용된 데이터마이닝 기술(연관 규칙, 군집화, 의사 결정나무, 최근접 이웃 기법, 링크 분석 기법, 신경망, 회귀분석, 휴리스틱 기법)별 분류 및 분석을 수행하였다. 따라서 본 연구에서 제안한 각각의 분류 및 분석 결과들을 통하여 현재까지 추천시스템의 연구에 대한 연구 동향을 파악 할 수 있었으며, 분석결과를 통해 추천시스템에 관심이 있는 연구자와 전문가에게 미래의 추천시스템의 연구에 대한 가이드라인을 제시 할 수 있을 것이라고 기대한다.

Improving Performance of Jaccard Coefficient for Collaborative Filtering

  • Lee, Soojung
    • 한국컴퓨터정보학회논문지
    • /
    • 제21권11호
    • /
    • pp.121-126
    • /
    • 2016
  • In recommender systems based on collaborative filtering, measuring similarity is very critical for determining the range of recommenders. Data sparsity problem is fundamental in collaborative filtering systems, which is partly solved by Jaccard coefficient combined with traditional similarity measures. This study proposes a new coefficient for improving performance of Jaccard coefficient by compensating for its drawbacks. We conducted experiments using datasets of various characteristics for performance analysis. As a result of comparison between the proposed and the similarity metric of Pearson correlation widely used up to date, it is found that the two metrics yielded competitive performance on a dense dataset while the proposed showed much better performance on a sparser dataset. Also, the result of comparing the proposed with Jaccard coefficient showed that the proposed yielded far better performance as the dataset is denser. Overall, the proposed coefficient demonstrated the best prediction and recommendation performance among the experimented metrics.

Clustering-based Hybrid Filtering Algorithm

  • Qing Li;Kim, Byeong-Man;Shin, Yoon-Sik;Lim, En-Ki
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 가을 학술발표논문집 Vol.30 No.2 (1)
    • /
    • pp.10-12
    • /
    • 2003
  • Recommender systems help consumers to find the useful products from the overloaded information. Researchers have developed content-based recommenders, collaborative recommenders, and a few hybrid systems. In this research, we extend the classic collaborative recommenders by clustering method to form a hybrid recommender system. Using the clustering method, we can recommend the products based on not only the user ratings but also other useful information from user profiles or attributes of items. Through our experiments on well-known MovieLens data set, we found that the information provided by the attributes of item on the item-based collaborative filter shows advantage over the information provided by user profiles on the user-based collaborative filter.

  • PDF

추천 시스템을 위한 2-way 협동적 필터링 방법을 이용한 예측 알고리즘 (A Predictive Algorithm using 2-way Collaborative Filtering for Recommender Systems)

  • 박지선;김택헌;류영석;양성봉
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제29권9호
    • /
    • pp.669-675
    • /
    • 2002
  • 최근 전자상거래에서 대부분의 개인화 된 추천 시스템들은 고객의 취향에 맞는 적절한 상품을 추천하기 위하여 협동적 필터링 기술을 적용하고 있다. 사용자 기반 협동적 필터링은 특정 고객의 선호도와 가장 유사한 선호도를 가지는 고객 그룹의 선호도를 바탕으로 그 고객의 특정 상품에 대한 선호도를 예측하는 기법이다. 그러나 이 방법은 두 고객이 모두 평가를 한 상품이 있어야 하고 오직 두 고객 사이에서만 상관 관계를 구할 수 있으므로 예측의 정확성이 떨어질 가능성이 있다. 아이템 기반 협동적 필터링은 고객이 선호도를 입력한 기존의 상품들과 예측하고자 하는 상품의 상관 관계를 계산하여 선호도를 예측한다. 이 방법에서는 상품들간의 유사도를 계산하기 위하여 두 상품에 대해 선호도를 입력한 고객들의 정보를 사용한다. 그러나 고객들간의 유사도가 전혀 고려되지 않기 때문에 만약 특정 고객과 전혀 선호도가 비슷하지 않은 사용자들의 평가를 기반으로 한다면, 상품들간의 유사도가 정확 하지 않고 아울러 추천 시스템의 예측 능력과 추천 능력이 저하되는 문제점이 있다. 본 논문에서는 기존의 아이템 기반 협동적 필터링 기술의 문제점을 보완하고 추천 시스템의 예측 능력을 향상시키기 위하여 유사한 선호도를 가지는 고객들의 평가에 근거하여 상품들간의 유사도를 구하여 특정 상품에 대한 고객의 선호도를 예측하여 추천해 주는 기법을 제안한다. 본 논문에서 제안한 방법의 성능을 기존의 여러 다른 협동적 필터링 방법들과의 비교실험을 통해 평가하였다. 실험 결과 본 논문에서 제안한 방법이 기존의 다른 방법들보다 우수함을 확인할 수 있었다.

사례기반 추론을 이용한 인터넷 서점의 서적 추천시스템 개발 (Development of a Book Recommender System for Internet Bookstore using Case-based Reasoning)

  • 이재식;명훈식
    • 한국전자거래학회지
    • /
    • 제13권4호
    • /
    • pp.173-191
    • /
    • 2008
  • 오늘날 인터넷의 전반적인 보급 및 전자상거래의 확산으로 인하여 정보의 홍수를 이루게 되었고, 고객들은 자신이 원하는 제품이나 서비스를 선택하기 위해서 정보를 탐색하는 작업이 더욱 어려워지게 되었다. 이러한 고객들에게 좀 더 편리하게 자신이 원하는 제품이나 서비스를 선택하도록 도와주는 것이 추천 시스템으로서, 고객 관계 관리의 중요한 부분으로 자리 잡게 되었다. 본 연구에서는, 인터넷 서점을 이용하는 고객에게 그가 관심을 가질만한 서적을 추천하여 줌으로써 구입할 서적의 선택을 도와주는 서적 추천 시스템을 개발하였다. 기존의 서적 추천 시스템 개발에 협업 필터링 기법이 주로 활용되어 왔다. 하지만 협업 필터링 기법을 적용하기 위해서는 각 서적에 대한 구매자들의 평가치가 수집되어야 하는데, 이러한 평가치들은 시스템 개발 이전에 오랜 기간에 걸쳐 정교한 계획 하에서 수집되어야 한다. 더욱이 구매자들이 평가치 제공에 협조하지 않을 경우에는 추천 시스템 자체의 작동이 불가능하게 된다. 그러므로 본 연구에서는 고객들의 구매기록만으로 서적 추천을 수행할 수 있도록 사례기반추론 기법을 활용하여 시스템을 개발 하였는데, 서적의 소분류 코드를 예측하는 상황에서 약 40% 수준의 적중률을 보였다.

  • PDF

추천 시스템 기법 연구동향 분석 (Review and Analysis of Recommender Systems)

  • 손지은;김성범;김현중;조성준
    • 대한산업공학회지
    • /
    • 제41권2호
    • /
    • pp.185-208
    • /
    • 2015
  • The explosive growth of the world-wide-web and the emergence of e-commerce has led to the development of recommender systems. Recommender systems are personalized information filtering used to identify a set of items that will be of interest to a certain user. This paper reviews recommender systems and presents their pros and cons.

연관 아이템 트리를 이용한 추천 에이전트 (A Recommender Agent using Association Item Trees)

  • 고수정
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제36권4호
    • /
    • pp.298-305
    • /
    • 2009
  • 협력적 여과 시스템은 내용 기반 여과 시스템과는 대조적으로 아이템에 대한 정보를 반영하지 않으며, 또한 사용자가 자신의 흥미에 대한 정보를 제공하지 않았을 경우 추천을 할 수 없다는 단점을 갖는다. 본 논문에서는 협력적 여과 시스템의 단점을 해결하기 위하여 연관 아이템 트리를 이용한 추천 에이전트를 제안한다. 제안된 방법은 벡터 공간 모델과 K-means 알고리즘을 이용하여 사용자를 군집시킨 후 그룹의 대표 평가값을 추출한다. 다음으로, 군집된 그룹별로 아이템간의 상호정보량을 계산하여 아이템간의 연관도를 파악하며, 이를 기반으로 연관 아이템 트리를 생성한다. 이와 같이 생성한 각 그룹의 연관 아이템 트리와 그룹의 대표 평가값을 이용하여 새로운 사용자에게 아이템을 추천한다. 제안된 추천 에이전트는 사용자 정보와 아이템 정보를 병합하여 새로운 사용자에게 아이템을 추천하며, 아이템간의 유사도를 계산하기 위하여 상호정보량을 사용하고 이를 기반으로 연관 아이템 트리를 생성함으로써 초기에 아이템에 대하여 평가한 정보가 부족한 사용자에게 정확도가 높은 아이템을 추천할 수 있다는 장점을 갖는다. 제안된 방법은 MovieLens 추천 시스템의 데이터 집합을 사용하여 기존의 방법과 비교하였다.

Utilizing Fuzzy Logic for Recommender Systems

  • Lee, Soojung
    • 한국컴퓨터정보학회논문지
    • /
    • 제23권8호
    • /
    • pp.45-50
    • /
    • 2018
  • Many of the current successful commercial recommender systems utilize collaborative filtering techniques. This technique recommends products to the active user based on product preference history of the neighbor users. Those users with similar preferences to the active user are typically named his/her neighbors. Hence, finding neighbors is critical to performance of the system. Although much effort for developing similarity measures has been devoted in the literature, there leaves a lot to be improved, especially in the aspect of handling subjectivity or vagueness in user preference ratings. This paper addresses this problem and presents a novel similarity measure using fuzzy logic for selecting neighbors. Experimental studies are conducted to reveal that the proposed measure achieved significant performance improvement.