Journal of the Korean BIBLIA Society for library and Information Science
/
v.32
no.2
/
pp.101-123
/
2021
This study analyses the questions and answers contained in the Knowledge Information Database of the collaborative digital reference service, 'Ask a librarian'. And based on the results of status of user requests, this study draws information usage behavior in the early stages of the service was derived. 1,124 Knowledge Information Database items out of 3,506 cases was analyzed by nine criterion. ① Number of questions and whether to be reference questions, ② Subject and keywords of the question, ③ Purpose of the question, ④ Type of question, ⑤ User's information request, ⑥ Information source and reference services provided by the librarian, ⑦ Number of days to answer, ⑧ Level of the participating library, ⑨ Question type by topic. As a results of analysis, first, users asked for reference questions from various topics as needed, rather than one from a similar topic at a time, but more than half of the total pure reference questions were from the field of library information science. Second, about 71.35% of users were using the 'Ask a librarian' service to recommend a list of information resources related to a particular topic or research problem, and there were also questions that required consultation on the reading situation. Third, the most preferred sources of information for users were bibliography, and in the case of online information sources, users did not relatively prefer them. Fourth, the number of days required to answer was able to confirm significant differences depending on the type of question and the level of the participating library. Fifth, 31.33% of the purpose of the general field question showed that were self-generated.
Journal of Information Science Theory and Practice
/
v.1
no.4
/
pp.12-37
/
2013
Organizational climate and organization culture can be some of the leading factors in hindering knowledge sharing within the organization. It is generally accepted that successful knowledge management practice, including knowledge sharing, comes as a result of a conducive and knowledge sharing friendly environment. Organizations that promote and reward collective work generate a trustful and a more collaborative learning culture. The perception of fairness in an organization has been considered an important indicator of employee behavior, attitude, and motivation. This study investigates organizational justice perception and its impact on knowledge sharing practices among forensic experts in the Turkish National Police. The study findings revealed that senior officers, who are experts in the field, have the strongest organizational justice perception. Meanwhile, noncommissioned officers or technicians bear positive but comparatively weaker feelings about the existence of justice within the organization. The study argues that those who satisfy their career expectations tend to have a higher organizational justice perception.
The utilization of the e-commerce market has become a common life style in today. It has become important part to know where and how to make reasonable purchases of good quality products for customers. This change in purchase psychology tends to make it difficult for customers to make purchasing decisions in vast amounts of information. In this case, the recommendation system has the effect of reducing the cost of information retrieval and improving the satisfaction by analyzing the purchasing behavior of the customer. Amazon and Netflix are considered to be the well-known examples of sales marketing using the recommendation system. In the case of Amazon, 60% of the recommendation is made by purchasing goods, and 35% of the sales increase was achieved. Netflix, on the other hand, found that 75% of movie recommendations were made using services. This personalization technique is considered to be one of the key strategies for one-to-one marketing that can be useful in online markets where salespeople do not exist. Recommendation techniques that are mainly used in recommendation systems today include collaborative filtering and content-based filtering. Furthermore, hybrid techniques and association rules that use these techniques in combination are also being used in various fields. Of these, collaborative filtering recommendation techniques are the most popular today. Collaborative filtering is a method of recommending products preferred by neighbors who have similar preferences or purchasing behavior, based on the assumption that users who have exhibited similar tendencies in purchasing or evaluating products in the past will have a similar tendency to other products. However, most of the existed systems are recommended only within the same category of products such as books and movies. This is because the recommendation system estimates the purchase satisfaction about new item which have never been bought yet using customer's purchase rating points of a similar commodity based on the transaction data. In addition, there is a problem about the reliability of purchase ratings used in the recommendation system. Reliability of customer purchase ratings is causing serious problems. In particular, 'Compensatory Review' refers to the intentional manipulation of a customer purchase rating by a company intervention. In fact, Amazon has been hard-pressed for these "compassionate reviews" since 2016 and has worked hard to reduce false information and increase credibility. The survey showed that the average rating for products with 'Compensated Review' was higher than those without 'Compensation Review'. And it turns out that 'Compensatory Review' is about 12 times less likely to give the lowest rating, and about 4 times less likely to leave a critical opinion. As such, customer purchase ratings are full of various noises. This problem is directly related to the performance of recommendation systems aimed at maximizing profits by attracting highly satisfied customers in most e-commerce transactions. In this study, we propose the possibility of using new indicators that can objectively substitute existing customer 's purchase ratings by using RFM multi-dimensional analysis technique to solve a series of problems. RFM multi-dimensional analysis technique is the most widely used analytical method in customer relationship management marketing(CRM), and is a data analysis method for selecting customers who are likely to purchase goods. As a result of verifying the actual purchase history data using the relevant index, the accuracy was as high as about 55%. This is a result of recommending a total of 4,386 different types of products that have never been bought before, thus the verification result means relatively high accuracy and utilization value. And this study suggests the possibility of general recommendation system that can be applied to various offline product data. If additional data is acquired in the future, the accuracy of the proposed recommendation system can be improved.
We proposed a conceptual design of the web-based agent model for global supply chain management(GSCM), where agents representing autonomous operational units, such as suppliers, factories, distribution center and customers, cooperate and are coordinated through the information exchange. The agent model assumed the hierarchical federated system. In the federated system, the agents of the same region are grouped and linked to the region-specific facilitator only through which communication between agents is allowed. The facilitator is responsible for monitoring and controlling the conversations consisting of the message flows across the agents. A web-based user presentation was also designed so that human users could involve in collaborative settings into the GSCM multi-agent system. In the conversation protocols which allow for complex coordinated behavior among agents, the KQML was extended to represent the messages. A GSCM scenario where the supply chain is formed upon customer order and supply decision is made was used to demonstrate the dynamics of the conversation protocols.
Journal of the Korean Society for Library and Information Science
/
v.57
no.2
/
pp.409-434
/
2023
This study analyzes the authorship of all articles published in four domestic LIS journals over a 20-year period from 2002 to 2021 to examine the current status of scholarly communication through Korean LIS journals and suggest future prospects. To achieve this purpose, the study analyzed the number of co-authors, the proportion of returning authors, the publishing preference index (PPI), the author group change trend, and the researcher attraction index (RAI). The analysis revealed the level of collaborative research in each journal, the degree of formation of related author groups by journal, the inflection point of author group changes, the characteristics of emerging researchers, and the degree of author sharing between journals. Overall, 2015 was found to be an inflection point where the author community of Korean LIS journals changed. The newer generation of researchers showed a slightly different behavior of publishing papers than the older generation, as they mainly conduct collaborative research. These quantitative results could be triangulated with the qualitative interview data of previous studies to further strengthen the development strategy of Korean LIS journals.
In collaborative recommendation two models are generally used: the user model and the article model. A user model learns correlation between users preferences and recommends an article based on other users preferences for the article. Similarly, an article model learns correlation between preferences for articles and recommends an article based on the target user's preference for other articles. In this paper, we investigates various combination methods of the user model and the article model for better recommendation performance. They include simple sequential and parallel methods, perceptron, multi-layer perceptron, fuzzy rules, and BKS. We adopt the multi-layer perceptron for training each of the user and article models. The multi-layer perceptron has several advantages over other methods such as the nearest neighbor method and the association rule method. It can learn weights between correlated items and it can handle easily both of symbolic and numeric data. The combined models outperform any of the basic models and our experiments show that the multi-layer perceptron is the most efficient combination method among them.
The Journal of the Convergence on Culture Technology
/
v.9
no.5
/
pp.463-474
/
2023
Advances in technology have made it easier for organizations to share information and collaborate. However, collaboration systems where multiple entities share and access information are vulnerable to security. The concept of Software Bill Of Materials (SBOM) has emerged as a way to strengthen information security by identifying and transparently managing the components of software programs. To promote the adoption of SBOM in Korea, this study investigated the intention to use of collaboration system managers. This study was based on the theory of planned behavior and the integrated technology acceptance theory. The results of this study confirmed that performance expectations from SBOM adoption were an important variable for intention to use, and positive attitudes toward security also had an indirect effect through performance expectations. We found that SBOM adoption has an important causal relationship with performance due to the fact that it is targeted at enterprises, and that positive attitudes toward security and social climate can have a strong effect on intention to use.
Kim, Kap-Dong;Lee, Kwang-Il;Park, Jun-Hee;Kim, Sang-Ha
Journal of Information Processing Systems
/
v.3
no.1
/
pp.1-7
/
2007
In mobile ad hoc networks, an application scenario requires mostly collaborative mobility behavior. The key problem of those applications is scalability with regard to the number of multicast members as well as the number of the multicast group. To enhance scalability with group mobility, we have proposed a multicast protocol based on a new framework for hierarchical multicasting that is suitable for the group mobility model in MANET. The key design goal of this protocol is to solve the problem of reflecting the node's mobility in the overlay multicast tree, the efficient data delivery within the sub-group with group mobility support, and the scalability problem for the large multicast group size. The results obtained through simulations show that our approach supports scalability and efficient data transmission utilizing the characteristic of group mobility.
Proceedings of the Korean Society of Computer Information Conference
/
2019.01a
/
pp.437-438
/
2019
스마트폰을 중심으로 한 모바일 기기의 보급과 온라인 소셜 네트워크 서비스의 이용자들이 증가하면서 사용자들은 많은 콘텐츠를 소비하고 공유한다. 이는 콘텐츠 사용자들의 개별적 기호에 맞지 않거나 만족도가 떨어지는 콘텐츠를 소비하게 한다. 이와 같은 문제를 해결하기 위해 소셜 네트워크 사용자에게 적합한 콘텐츠를 추천하기 위한 기법에 대한 연구가 활발하게 진행되고 있다. 본 논문에서는 온라인 상에 존재하는 다양한 정보 중에서 공연과 관련한 콘텐츠들을 중심으로 사용자 성향별로 추천을 해줄 수 있는 협업필터링 방법에 대하여 제안한다.
Kim, Seong-Hune;Lee, Hong-Chang;Park, Jong-Mun;Lee, Myung-Joon
Proceedings of the Korean Information Science Society Conference
/
2008.06d
/
pp.213-217
/
2008
협업시스템은 분산된 작업그룹의 구성원들이 정보를 쉽게 교환하고 공유할 수 있도록 지원하는 공동작업환경이다. HTTP/1.1 을 확장한 WebDAV는 사용자가 원거리 서버의 자원을 수정하고 관리하는 기능을 제공하는 웹 통신 프로토콜이다. CoSlide 협업시스템은 효과적으로 협업을 지원하기 위하여 WebDAV 프로토콜을 확장하여 개발된 협업시스템으로서 협업을 위한 가상공 간을 제공하며 가상공간에 다양한 자원을 등록하고 관리할 수 있다. 하지만, CoSlide 협업시스템이 제공하는 기존의 작업장들은 그룹 구성원들간의 효과적인 협업을 위한 구성원들의 행위 인식 (Behavior Awareness) 을 지원하지 않고 있다. 본 논문에서는 CoSlide 협업시스템을 이용하여 협업을 수행할 때, 협업의 효율성을 증대시키기 위하여 구성원이 수행하는 행동을 인식할 수 있도록 자바 메시지 서비스를 이용하여 CoSlide 서버의 Awareness를 지원하기 위한 시스템을 설계하였다. 또한 CoSlide 서버의 Awareness 지원을 위하여 CoSlide 클라이언트인 CoSpace의 확장을 설계하였다. 사용자는 CoSpace 협업 클라이언트를 이용하여 협업을 수행하면 CoSlide 서버는 구성원이 수행하는 작업을 인식하고, 인식한 정보의 공개수준 여부와 수신여부를 참조하여 관련된 구성원에게 알려줌으로써 협업의 효율성이 증대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.