• 제목/요약/키워드: Collaborative Clustering

검색결과 93건 처리시간 0.022초

Pure P2P 환경에서 컨텍스트 정보를 이용한 실시간 서비스 추천 시스템 (A Real-time Service Recommendation System using Context Information in Pure P2P Environment)

  • 이세일;이상용
    • 한국지능시스템학회논문지
    • /
    • 제15권7호
    • /
    • pp.887-892
    • /
    • 2005
  • Pure P2P 환경에서는 축적된 자료를 사용하지 않고 실시간 정보를 사용하여 소수의 서비스 항목만으로도 협력적 필터링을 제공할 수 있어야 한다. 그러나 지역에서 수집된 소수의 서비스 항목만으로 협력적 필터링을 할 경우 추천 서비스의 질이 떨어지게 되므로 사용자의 컨텍스트 정보를 이용하여 추천 서비스의 질을 높일 수 있는 방법이 연구되어야 한다. 하지만 다량의 사용자 컨텍스트 정보가 한순간에 인식될 수 있기 때문에 확장성 문제(Scalability Problem)가 발생하고, 영역과 아이템에 따라 차별화된 서비스를 지원하기에는 한계성을 가지고 있다. 본 연구에서는 SOM을 이용하여 컨텍스트 정보를 서비스 영역별로 클러스터링(Clustering)하여, 사용자별로 분류함으로 확장성 문제를 해결하였다. 또한, 분류된 자료들 중 서비스 요구자와 비슷한 분류에 있는 사용자들의 컨텍스트 정보들을 정량화하여 협력적 필터링함으로 사용자에게 적합한 서비스를 추천할 수 있었다.

사용자 선호도와 시각적 기술자를 이용한 사용자 프로파일 기반 이미지 추천 알고리즘 (Image recommendation algorithm based on profile using user preference and visual descriptor)

  • 김덕환;양준식;조원희
    • 정보처리학회논문지D
    • /
    • 제15D권4호
    • /
    • pp.463-474
    • /
    • 2008
  • 정보 기술과 인터넷의 발전은 멀티미디어 컨텐츠의 양에 있어서 폭발적인 성장을 가져 왔으며 이러한 멀티미디어 컨텐츠 양의 증가는 이용자의 요구에 맞는 멀티미디어 컨텐츠 추천에 대한 필요성을 더 증가 시켰다. 현재까지 일반상품과 멀티미디어 컨텐츠 추천을 위한 기법에는 협업필터링 (CF: Collaborative Filtering)이 있다. 하지만 기존의 CF 기법은 이미지가 갖고 있는 시각적 특징을 제대로 표현하지 못하고 있으며, 입력 데이터의 희박성 (Sparsity) 문제와 신상품 추천 문제 그리고 선호도의 동적인 변화 문제를 포함하고 있기 때문에 이미지 컨텐츠 추천에는 적합하지 않다. 이와 같은 기존의 CF기법의 단점을 해결하기 위해서 본 논문에서는 새로운 이미지 추천 방법으로 FBCF (Feature Based Collaborative Filtering) 기법을 제안한다. FBCF 기법은 시각적 특징을 선호도에 따라 군집화한 새로운 사용자 프로파일 구성방법을 제시하며, 선호도 피드백을 통하여 구매자의 현재 성향을 추천에 반영할 수 있다. 실제 모바일 이미지 데이터를 사용한 실험에서 FBCF 기법이 기존의 CF 기법보다 400% 향상된 성능을 보임을 확인할 수 있다.

추천시스템의 성능 향상을 위한 시간스키마 적용 2단계 클러스터링 기법 (Two-step Clustering Method Using Time Schema for Performance Improvement in Recommender Systems)

  • 부종수;홍종규;박원익;김룡;김영국
    • 한국전자거래학회지
    • /
    • 제10권2호
    • /
    • pp.109-132
    • /
    • 2005
  • 디지털 TV 채널 및 인터넷 상에서의 멀티미디어 컨텐츠의 홍수로 인해 사용자는 종종 자신이 선호하는 컨텐츠를 찾는데 어려움을 갖고 있으며, 또한 컨텐츠를 찾기 위해 많은 시간을 들이고 있다. 심지어 컨텐츠를 검색하는 동안 원하는 정보를 잃어버리는 경우도 있다. 고객들이 선호하는 컨텐츠를 추천하는 기존 시스템들이 가지는 문제점으로 사용자 수가 증가함에 따라 추천시간이 증가하는 확장성 문제와 새로운 고객의 경우 상품에 대한 선호도 정보가 부족할 경우 추천 정확도가 저하되는 희박성 문제가 있다. 본 논문에서는 이러한 문제점들을 해결하기 위해 협력적 필터링 방식에 기반한 2단계 클러스터링 기법을 제안한다. 1단계에서는 고객의 성과 나이와 같은 기본적인 사용자 정보만을 사용하여 추천하고, 2단계에서는 사용자의 동적인 성향 변화를 반영하기 위해 시간스키마를 적용하여 추천한다. 이렇게 추천된 결과의 피드백을 이용함으로써 계산시간의 단축과 예측정확도를 높일 수 있다.

  • PDF

Collaborative filtering based Context Information for Real-time Recommendation Service in Ubiquitous Computing

  • Lee Se-ll;Lee Sang-Yong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제6권2호
    • /
    • pp.110-115
    • /
    • 2006
  • In pure P2P environment, it is possible to provide service by using a little real-time information without using accumulated information. But in case of using only a little information that was locally collected, quality of recommendation service can be fallen-off. Therefore, it is necessary to study a method to improve qualify of recommendation service by using users' context information. But because a great volume of users' context information can be recognized in a moment, there can be a scalability problem and there are limitations in supporting differentiated services according to fields and items. In this paper, we solved the scalability problem by clustering context information per each service field and classifying it per each user, using SOM. In addition, we could recommend proper services for users by quantifying the context information of the users belonging to the similar classification to the service requester among classified data and then using collaborative filtering.

Strategies for Selecting Initial Item Lists in Collaborative Filtering Recommender Systems

  • Lee, Hong-Joo;Kim, Jong-Woo;Park, Sung-Joo
    • Management Science and Financial Engineering
    • /
    • 제11권3호
    • /
    • pp.137-153
    • /
    • 2005
  • Collaborative filtering-based recommendation systems make personalized recommendations based on users' ratings on products. Recommender systems must collect sufficient rating information from users to provide relevant recommendations because less user rating information results in poorer performance of recommender systems. To learn about new users, recommendation systems must first present users with an initial item list. In this study, we designed and analyzed seven selection strategies including the popularity, favorite, clustering, genre, and entropy methods. We investigated how these strategies performed using MovieLens, a public dataset. While the favorite and popularity methods tended to produce the highest average score and greatest average number of ratings, respectively, a hybrid of both favorite and popularity methods or a hybrid of demographic, favorite, and popularity methods also performed within acceptable ranges for both rating scores and numbers of ratings.

The cluster-indexing collaborative filtering recommendation

  • Park, Tae-Hyup;Ingoo Han
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2003년도 춘계학술대회
    • /
    • pp.400-409
    • /
    • 2003
  • Collaborative filtering (CF) recommendation is a knowledge sharing technology for distribution of opinions and facilitating contacts in network society between people with similar interests. The main concerns of the CF algorithm are about prediction accuracy, speed of response time, problem of data sparsity, and scalability. In general, the efforts of improving prediction algorithms and lessening response time are decoupled. We propose a three-step CF recommendation model which is composed of profiling, inferring, and predicting steps while considering prediction accuracy and computing speed simultaneously. This model combines a CF algorithm with two machine learning processes, SOM (Self-Organizing Map) and CBR (Case Based Reasoning) by changing an unsupervised clustering problem into a supervised user preference reasoning problem, which is a novel approach for the CF recommendation field. This paper demonstrates the utility of the CF recommendation based on SOM cluster-indexing CBR with validation against control algorithms through an open dataset of user preference.

  • PDF

Extraction of User Preference for Hybrid Collaborative Filtering

  • Qing Li;Kim, Byeong-Man;Shin, Yoon-Sik;Lim, En-Ki
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 봄 학술발표논문집 Vol.31 No.1 (B)
    • /
    • pp.7-9
    • /
    • 2004
  • With the development of e-commerce and information access, recommender systems have become a popular technique to prune large information spaces so that users are directed toward those items that best meet their needs and preferences. In this paper, clustering technique is applied in the collaborative recommender framework to consider semantic contents available from the user profiles. We also suggest methods to construct user profiles from rating information and attributes of items to accommodate user preferences. Further, we show that the correct application of the semantic content information obtained from user profiles does enhance the effectiveness of collaborative recommendation.

  • PDF

P2P 컴퓨팅 환경에서의 협동적 필터링 (Collaborative Filtering in Peer-to-Peer Computing Environment)

  • 조대연;양원제;이경전
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2002년도 춘계학술대회 논문집
    • /
    • pp.383-390
    • /
    • 2002
  • 본 논문에서는 Peer-to-Peer 환경에서의 협동적 필터링의 필요성에 대해 논의하고, 이를 위한 P2P 컴퓨팅의 구조 설계, Peer Clustering기법, Peer간 메시지의 종류, 그리고 이를 구현한 시스템에 대하여 설명한다.

  • PDF

Clustering method for similar user with Miexed Data in SNS

  • Song, Hyoung-Min;Lee, Sang-Joon;Kwak, Ho-Young
    • 한국컴퓨터정보학회논문지
    • /
    • 제20권11호
    • /
    • pp.25-30
    • /
    • 2015
  • The enormous increase of data with the development of the information technology make internet users to be hard to find suitable information tailored to their needs. In the face of changing environment, the information filtering method, which provide sorted-out information to users, is becoming important. The data on the internet exists as various type. However, similarity calculation algorithm frequently used in existing collaborative filtering method is tend to be suitable to the numeric data. In addition, in the case of the categorical data, it shows the extreme similarity like Boolean Algebra. In this paper, We get the similarity in SNS user's information which consist of the mixed data using the Gower's similarity coefficient. And we suggest a method that is softer than radical expression such as 0 or 1 in categorical data. The clustering method using this algorithm can be utilized in SNS or various recommendation system.

베이지안 추정치가 부여된 유사도 가중치와 연관 사용자 군집을 이용한 선호도 예측 시스템 (Preference Prediction System using Similarity Weight granted Bayesian estimated value and Associative User Clustering)

  • 정경용;최성용;임기욱;이정현
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제30권3_4호
    • /
    • pp.316-325
    • /
    • 2003
  • 기존의 협력적 필터링 기술을 이용한 사용자 선호도 예측 방법에서는 피어슨 상관 계수에 의해 사용자의 유사도를 구하고, 아이템에 대한 사용자의 선호도를 기반으로 이웃 선정 방법을 사용하므로 아이템에 대한 내용을 반영하지 못할 뿐만 아니라 희박성 문제를 해결하지 못하였다. 본 논문에서는 기존의 사용자 선호도 예측 방법의 문제점을 보완하기 위하여 베이지안 추정치가 부여된 유사도 가중치와 연관 사용자 군집을 이용한 선호도 예측 시스템을 제안한다. 제안한 방법에서는 협력적 필터링 시스템에서의 희박성 문제를 해결하기 위하여 Association Rule Hypergraph Partitioning 알고리즘을 사용하여 사용자를 장르별로 군집하며 새로운 사용자는 Naive Bayes 분류자에 의해 이들 장르 중 하나로 분류된다. 또한, 분류된 장르 내에 속한 사용자들과 새로운 사용자의 유사도를 구하기 위해 Naive Bayes 학습을 통해 사용자가 평가한 아이템에 추정치를 달리 부여한다. 추정치가 부여된 선호도를 기존의 피어슨 상관 관계에 적용할 경우 결측치(Missing Value)로 인한 예측의 오류를 적게 하여 예측의 정확도를 높일 수 있다. 제안된 방법의 성능을 평가하기 위해서 기존의 협력적 필터링 기술과 비교 평가하였다. 그 결과 기존의 협력적 필터링 기술의 문제점을 해결하여 예측의 정확도를 높이는데 효과적임을 확인하였다.