• Title/Summary/Keyword: Coliform survival

Search Result 19, Processing Time 0.025 seconds

Survival and Thermal Inactivation of Coliform Bacteria after the Heat Treatment at 143°F (유우원(乳牛源) 대장균군세균(大腸菌群細菌)의 치사열(致死熱)에 관한 연구)

  • Chung, G.T.;Han, H.R.
    • Korean Journal of Veterinary Research
    • /
    • v.11 no.2
    • /
    • pp.137-140
    • /
    • 1971
  • Survival and thermal inactivation after heat treatment at $143^{\circ}F$ were observed among 27 strains of coliform bacteria isolated from dairy cattle. The results obtained were as follows. 1. The obvious differences in heat-sensitivity were observed among the strains tested. 2. No strain was found resistant to the heat treatment of $143^{\circ}F$ for 30 minutes. 3. A marked effect of density of coliform bacteria on the survival after the heat treatment was observed. As the density of coliform bacteria was increased, the rate of survival was increased markedly regardless of the length of heat treatment.

  • PDF

Survival of Sanitary Indicative Bacteria Inoculated in Fish Muscle Homogenates during Freezing and Frozen Storage (어육에 접종한 위생지표세균의 동결저장중 변화)

  • CHOI Jong Duck;CHANG Dong Suck;KIM Young Man
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.19 no.4
    • /
    • pp.356-362
    • /
    • 1986
  • This experiment was designed to evaluate effects of freezing and frozen storage on survival of sanitary indicative bacteria in seafoods. Culture of bacteria such as Escherichia coli type I, Citrobacter freundii type I, Klebsiella aerogenes type I and Streptococcus faecalis was inoculated into homogenates of pollack, shrimp, and sardine frozen in a contact plate freezer at $-40^{\circ}C$ and chest freezer at $-20^{\circ}C$, stored at $-20^{\circ}C$, and then survival of the inoculated bacteria was determined over a period of 95 days. Coliform group was highly sensitive to freezing and frozen storage showing survival of about $2\%$ after 95 days of frozen storage at $-20^{\circ}C$, whereas Streptococcus faecalis was relatively resistant with $20\%$ survival rate. The sanitary indicative bacteria count was rapidly decreased in the early stage of frozen storage revealing 90 to $95\%$ loss of coliform group and 40 to $70\%$ loss in case of Streptococcus faecalis after 10 days storage. In determining recovery rate, most probable number (MPN) method gave more reproducible recovery of the tested strain than did the selected agar plate method.

  • PDF

Fecal Coliform Bacteria Loading from the Polecat Creek Watershed in Virginia, USA (Polecat Creek 유역의 분변성 대장균 배출 부하 특성)

  • Mostaghimi, Saied;Im, Sang-Jun
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.1 s.106
    • /
    • pp.106-111
    • /
    • 2004
  • Fecal coliform bacteria is one of the most common cause of water quality impairments in Virginia, USA. Instream concentrations of fecal coliform (FC) bacteria were routinely monitored to assess surface water quality of the Polecat Creek watershed. Median concentration in water samples collected from 1995 to 2000 ranged from 80 cfu/100 mL to t 70 cfu/100 mL, while geometric mean concentrations ranged from 81 cfu/100 mL to 141 cfu/100 mL. The dilution and deposition by Lake Caroline may cause to lower FC concentration at monitoring site QPB, as compared FC concentration at QPD. Higher in-stream FC concentration occurred during the summer period(June-August), and lower concentration typically occurred during the winter period (December-February). This is due to more cattle in streams, and greater survival and regrowth of FC bacteria under warmer condition. The findings of this study can be helpful in planning the water quality monitoring program to avoid the inaccurate assessment of water quality due to the timing of sample collection.

Reflection on Kinetic Models to the Chlorine Disinfection for Drinking Water Production

  • Lee, Yoon-Jin;Nam, Sang-ho
    • Journal of Microbiology
    • /
    • v.40 no.2
    • /
    • pp.119-124
    • /
    • 2002
  • Experiments for the characterization of inactivation were performed in a series of batch processes with the total coliform used as a general indicator organism based on the chlorine residuals as a disinfectant. The water samples were taken from the outlet of a settling basin in a conventional surface water treat- ment system that is provided with the raw water drawn from the mid-stream of the Han River, The inactivation of total coliform was experimentally analysed for the dose of disinfectants contact time, filtration and mixing intensity. The curves obtained from a series of batch processes were shaped with a general tailing-off and biphasic mode of inactivation, i.e. a sharp loss of bacterial viability within 15 min followed by an extended phase. In order to observe the effect of carry-over suspended solids on chlorine consumption and disinfection efficiency, the water samples were filtered, prior to inoculation with coliforms, with membranes of both 2.5$\mu$m and 11.0 $\mu$m pore size, and with a sand tilter of 1.0 mm in effective size and of 1.4 in uniformity coefficient. As far as the disinfection efficiency is concerned, there were no significant differences. The parameters estimated by the models of Chick-Wat-son, Hom and Selleck from our experimental data obtained within 120 min are: log(N/N$\_$0/)=-0.16CT with n=1, leg(N/N$\_$0/)=-0.71C$\^$0.87/ with n 1 for the Chick-Watson model, log (N/N$\_$0/)=-1.87C$\^$0.47/ T$\^$0.36/ for the Hom model, log (MHo)=-2.13log (1+CT/0.11) for the Selleck model. It is notable that among the models reviewed with regard to the experimental data obtained, the Selleck model appeared to most closely resemble the total coliform survival curve.

Comparison of Fecal Microbes' Survival in Soil between Compost Surface Application and Soil Incorporation (지표와 지중 퇴비 시비에 따른 토양에서의 분변성 미생물 생존성 비교)

  • Jun, Sang Min;Song, Inhong;Kim, Kyeung;Hwang, Soon Ho;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.3
    • /
    • pp.1-7
    • /
    • 2015
  • The objective of this study was to compare fecal microbes survival in soil between compost surface application and soil incorporation. The survival experiment was conducted in six styrofoam beds ($510{\times}325{\times}305(mm)$ in size) filled with sandy loam soil. A half of six boxes were received by compost surface application, while the other half were treated with compost-soil mixture. Duplicated surface and surbsurface soil (20 cm depth) samples were collected at various interval up to 50 days and analyzed for the determination of fecal coliforms and E. coli numbers. As expected, surface applied beds demonstrated two to three magnitudes order greater in both the study microorganisms as compared to soil incorporated beds. Microbial inactivation rate of soil surface was twice as great as subsurface soil condition probably due to exposure to sun light and environmental conditions including moisture loss. When rainfall occurred, microbes on the surface were transported into soil along with water movement. It was concluded that surface compost application may be easier to apply but pose higher risk of human exposure to microbes. Winter compost application may be favorable in alleviating health risk by giving some time for inactivation compared to spring application.

Disinfection Characteristic of Sewage Wastewater Treatment Using Solar Light/TiO2 Film System (태양광/광촉매를 이용한 오폐수 살균특성)

  • Cho Il-Hyoung;Lee Nae-Hyun;An Sang-Woo;Kim Young-Kyu;Lee Seung-Mok
    • Journal of Environmental Science International
    • /
    • v.15 no.7
    • /
    • pp.677-688
    • /
    • 2006
  • Currently, the application of $TiO_2$ photocatalyst has been focused on purification and treatment of wastewater. However, the use of conventional $TiO_2$ slurry photocatalyst results in disadvantage of stirring during the reaction and of separation after the reaction. And the usage of artificial UV lamp has made the cost of photocatalyst treatment system high. Consequently, we studied that solar light/$TiO_2$ film system was designed and developed in order to examine disinfection characteristics of sewage wastewater treatment. The optimum conditions for disinfection such as solar light intensity, characteristic of sewage wastewater, amounts of $TiO_2$ and comparison of solar ligth/$TiO_2$ systems with UV light/$TiO_2$ system was examined. The results are as follows: (1) photocatalytic disinfection process with solar light in the presence of $TiO_2$ film more effectively killed total coliform (TC) than solar light or $TiO_2$ film absorption only. (2) The survival ratio of TC and residual ratio of organic material (BOD, CODcr) decreased with remain resistant material. (3) The survival ratio of TC and residual ratio of organic material (BOD, CODcr) decreased with the increase of amounts of $TiO_2$. (4) TC survival ratio decreased linearly with increasing UV light intensity. (5) The disinfection effect of solar light/$TiO_2$ slurry system decreased more than UV light/$TiO_2$ film systems. (6) The disinfection reaction followed first-order kinetics. We suggest that solar light instead of using artificial UV light was conducted to investigate the applicability of alternative energy source in the disinfection of TC and the degradation of organic material.

Application of Coliform Bacterial Plasmid as a Trophic Indicator (콜리형 세균 Plasmid의 영양단계 지표 활용에 관한 연구)

  • Cho, Hong Bum
    • The Korean Journal of Ecology
    • /
    • v.11 no.1
    • /
    • pp.29-36
    • /
    • 1988
  • This present study has been carried out to examine the correlation between the distribution of the coliform bacterial plasmids and the viability test against heavy metals in the upper stream of Han river(Gapyung; clean water) and the its basin (Anyang Cheon; polluted water). And the distribution of plasmids were examined to be used as trophic indicator for analysis between the clean and polluted waters. 1. A total of 110 isolates were analyzed for the presence of plasmids by means of the boiling method and agarose gel techniques. Plasmids were significantly more frequent in the strains which had been isolated from the clean water (14.3%). Also, there were much higher multiplicity of plasmids at the polluted water(41.0%), compared with the clean water (33.0%). By the comparision between molecular weight of bacterial plasmids in the clean water and those of polluted water, there were no significant differences of the clean water from the polluted water, to such extent as 30.0%, 28.6%, respectively, in frequency for occurrence of high molecular weight plasmids iver 35.8% Mdal. 2. Each isolate was carried out the resistance test for mercury(10-5M), nickel(10-3M) and arsenic (0.1%). At the polluted site, the survival ability of the plasmid-carrying straings(Hg, 31.0%l Ni, 5.7%; As, 65.7%) was higher than that of the non plasmid-carrying strains(Hg, 12.1%; Ni, 3.0%; As, 54.6%). This trend was more remarkable in the clean site (plasmid-carrying strains: 16.7%,-,-). As a result it is suggested that plasmids could be used as an indicator of a certain types of water pollution. In addition, heavy metals might have inflyenced, some extent, to the distribution of plasmids in the environment which has been surveyed in the present study.

  • PDF

Impact of Pollution Sources on the Bacteriological Water Quality in the Yongnam-Gwangdo Shellfish Growing Area of Western Jinhae Bay, Korea (진해만 서부 용남·광도해역의 세균학적 수질에 미치는 육상 오염원의 영향)

  • Shim, Kil Bo;Ha, Kwang Soo;Yoo, Hyun Duk;Lee, Tae Seek;Kim, Ji Hoe
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.45 no.6
    • /
    • pp.561-569
    • /
    • 2012
  • To evaluate the bacteriological water quality in Yongnam-Gwangdo, located in western Jinhae Bay, seawater samples were analyzed using sanitary indicator bacteria at 57 sampling stations. According to survey results from January 2007 to December 2009, the range of the geometric mean and the estimated 90th percentile for coliforms and fecal coliforms in the samples were <1.8-16.5 and 1.8-246.8 MPN/100 mL and <1.8-7.1 and 1.8-74.8 MPN/100 mL, respectively. The samples, including those taken from stations located in Wonmunman, Gwangdo, and Dangdong, showed high levels of microbial contamination caused by the climate and weather patterns in the marine environment. The bacteriological water quality in the area met Korean criteria for a designated shellfish growing area for export and National Shellfish Sanitation Program criteria for an approved shellfish growing area, except at station #49. A total of 24 direct pollution sources were discharged into the shellfish growing area. The radius of impact was calculated for each pollution source to assess the effect on the shellfish growing area. The calculated radius of impact for most of the pollution sources was below 300 m. However, the radius of impact for the combined pollution sources in Kyeonnaeryang was 93-1973 m. There were significant differences between the calculated closed sea area and actual monitoring results. The closed sea area values calculated from the fecal coliform load in drainage water tended to be higher than the actual monitoring results. Tidal currents and environmental factors such as salinity, water temperature, sunlight, and microbiological factors affect the survival of fecal indicator bacteria in seawater.

Inactivation of Escherichia coli in Surface Water of Saturated Soil with the Pig Manure-based Liquid Fertilizers by Ultraviolet Radiation (자외선에 의한 가축분뇨 액비 시용 논 표면수 중 대장균 사멸율 변화)

  • Kim, Min-Kyeong;Jung, Goo-Bok;Hong, Seung-Chang;Kang, Seong-Soo;Kwon, Soon-Ik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.3
    • /
    • pp.368-370
    • /
    • 2011
  • Liquid manure fertilizer drived from pig slurry is a valuable source of nutrients for crop production. However, there is no study for environmental assessment regarding microbial quality to apply liquid manure fertilizer. Therefore, this study aimed at quantifying the level of environmental impact on fecal coliform (Escherichia coli or E. coli ) survival in saturated soil such as paddy field. Surface water samples were collected up to 168 and 11 hours under natural sunlight and artificial ultraviolet radiation, respectively. The inactivation rate of E. coli under natural sunlight increased gradually after 48 hours. However, the inactivation rate of E. coli under artificial ultraviolet radiation increased linearly over time. Our findings suggested that the ultraviolet radiation is the limited factor on E. coli survival in surface water of saturated soil. This result will provide useful and practical guideline to applicators of agricultural soil in deciding appropriate handling and time frames for preventing pollution of water quality for sustainable agriculture.

Microbiological Quality of Agricultural Water in Jeollabuk-do and the Population Changes of Pathogenic Escherichia Coli O157:H7 in Agricultural Water Depending on Temperature and Water Quality (전라북도 지역 농업용수의 미생물학적 특성 및 온도와 수질에 따른 농업용수의 병원성대장균 O157:H7 밀도 변화)

  • Hwang, Injun;Ham, Hyeonheui;Park, Daesoo;Chae, Hyobeen;Kim, Se-Ri;Kim, Hwang-Yong;Kim, Hyun Ju;Kim, Won-Il
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.4
    • /
    • pp.254-261
    • /
    • 2019
  • BACKGROUND: Agricultural water is known to be one of the major routes in bacterial contamination of fresh vegetable. However, there is a lack of fundamental data on the microbial safety of agricultural water in Korea. METHODS AND RESULTS: We investigated the density of indicator bacteria in the surface water samples from 31 sites collected in April, July, and October 2018, while the groundwater samples were collected from 20 sites within Jeollabuk-do in April and July 2018. In surface water, the mean density of coliform, fecal coliform, and Escherichia coli was 2.7±0.55, 1.9±0.71, and 1.4±0.58 log CFU/100 mL, respectively, showing the highest bacterial density in July. For groundwater, the mean density of coliform, fecal coliform, and E. coli was 1.9±0.58, 1.4±0.37, and 1.0±0.33 log CFU/ 100mL, respectively, showing no significant difference between sampling time. The survival of E. coli O157:H7 were prolonged in water with higher organic matter contents such as total nitrogen (TN), and nitrate-nitrogen (NO3-N). The reduction rates of E. coli O157:H7 in the water showed greater in order of 25, 35, 5, and 15℃. CONCLUSION: These results can be utilized as fundamental data for prediction the microbiological contamination of agricultural water and the development of microbial prevention technology.