• Title/Summary/Keyword: Cold-forging

Search Result 373, Processing Time 0.026 seconds

The elastic strain analysis of forged product and die according to the forging mode (단조형식에 따른 단조품과 금형의 탄성 변형에 관한 연구)

  • Lee, D.K.;Lee, Y.S.;Kim, W.I.;Lee, J.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.586-591
    • /
    • 2001
  • In the cold forging, elastic deformation of the die has been investigated to improve the accuracy of cold forged parts with F.E.M analysis using DEFORM, and with experiments using strain gauges. In the experiments, initial billet was selected to easily find the effect of elastic deformation according to the forging modes, extrusion and upsetting type, and only extrusion type. Elastic deformation of the die can be obtained by the signal from the strain gauges and this signal can be amplified by data acquisition system during the process. In the F.E.M analysis, two types of analysis are used to predict elastic strain of the die. To improve an accuracy of forged product and die dimension, this study compared with strain distribution between experiment and F.E.M analysis. As a result, the history of the deformation of the die and elastic recovery of forged product can be obtained by the elastic strain analysis of forged product and die according to the forging modes.

  • PDF

Study on the Cold Forging Process of Aluminum Pipe Yoke using Sliding Die for Reducing Friction (마찰저감을 위한 슬라이딩 금형을 적용한 알루미늄 파이프 요크 냉간 단조공정에 관한 연구)

  • S. M. Lee;I. K. Lee;S. Y. Lee;;J. W. Park;W. S. Hwang;Y. H. Moon;S. K. Lee
    • Transactions of Materials Processing
    • /
    • v.32 no.1
    • /
    • pp.5-11
    • /
    • 2023
  • The aim of this study is to manufacture an aluminum pipe yoke of automotive steering system for lightweight. In a multistage cold forging process for aluminum pipe yoke, the surface defects frequently occur due to excessive deformation or friction during extrusion process for forming hollow pipe part. It is import to reduce the friction between the material and the forging die. This study investigated a multistage forging process with sliding die to reduce friction for aluminum pipe yoke. After evaluating by FE analysis, the forging experiment with the sliding die was carried out. As a result, it was possible to manufacture a sound aluminum pipe yoke.

Reason of Die Fracture in Automatic Multistage Cold Forging of a High Strength Ball-Stud (고강도 재료의 볼스타드 냉간자동단조에서 발생한 금형의 파괴 원인 분석)

  • Li, Q.S.;Eom, J.G.;Kim, Y.S.;Kim, E.J.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.124-127
    • /
    • 2009
  • In this paper, a longitudinal die insert fracture which occurred during cold forging of a high strength ball-stud with a sound die design nearly optimized empirically for relatively low strength material of SCM435 is introduced and the reason is revealed. A comparative study between SCM435 and ESW105 is quantitatively made using a thermoelastic finite element method for die structural analysis coupled with a forging simulator theoretically based on a rigid-plastic finite element method. It has been shown that the longitudinal die insert fracture caused from non-optimized value of shrink fit, emphasizing that the die optimal design is inevitable for cold forging of high strength materials.

  • PDF

Finite Element Analysis for Precision Cold Forging of Clamp Yoke in Automobile Steering System (자동차 조향장치 클램프 요크의 정밀냉간단조를 위한 유한요소해석)

  • Song D. H.;Park Y. B.;Lim S. J.;Kim M. E.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.220-223
    • /
    • 2001
  • Until now, the clamp yoke of automobile has been largely manufactured by hot forging or burring process. Through the study, the precision cold forging process for clamp yoke has been analysed by using rigid-plastic finite element analysis code, DEFORM-3D. It has shown various results of the FEM simulation. An engineer should select the proper process considering the amount of product.

  • PDF

Development on the Automated Process System for Cold Forging of Non-axisymmetric Parts (비축대칭 제품의 냉간단조 공정설계 시스템 개발)

  • 이봉규;조해용;권혁홍
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.527-530
    • /
    • 1997
  • An automated process planning system for cold forging of non-axisymmetric parts of comparatively simple shape was developed in this study. Programs for the system have been written with Visual LISP in the AutoCAD using a personal computer and are composed of four main modules such as input module, shape cognition and shape expression module, material diameter determination module and process planning module. The design rules and knowledges for th system are extracted from the plasticity theories. handbook, relevant reference and empirical knowledge of field experts. Generally, in forging, only front view is needed for expression of axisymmetric parts, but non-axisymmetric parts are needed both front view and plane. At the plane, this system cognizes the external shape of non-axisymmetric parts - number of sides of regular polygon and radius of a circle circumscribing the polygon of n sides. At the front view, the system perceives diameter of axisymmetric portions and hight of primitive geometries such as polygon, cylinder, cone, concave, convex, etc.

  • PDF

The Prediction of Elastic Deformation for Cold Forging Die (냉간 단조용 금형의 탄성변형 예측)

  • 이영선
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.108-111
    • /
    • 1999
  • Elastic deformation of die has been investigated to improve the accuracy of cold forged parts. In order to improve the accuracy of forged parts we have investigated the elastic deformation of forging die by analysis with commercial. F. E. M code DEFORM and experiments using he strain gages. In the F. E. M analysis two types are used for elastic deformation of die. the one considers die as elastic body and the other considers the die as rigid body. The latter relatively takes a lot of time. The results from the two types are very similar with each other. Considering the results of analysis and experiments it is likely that the elastic strain of forging die is very small.

  • PDF

Multi-Stage Cold Forging Process Design with A* Searching Algorithm (탐색 알고리즘을 이용한 냉간 단조 공정 설계)

  • 김홍석;임용택
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.10a
    • /
    • pp.30-36
    • /
    • 1995
  • Conventionally design for multi-stage cold forging depends on the designer's experience and decision-making. Due to such non-deterministic nature of the process sequence design, a flexible inference engine is needed for process design expert system. In this study, A* searching algorithm was introduced to arrive at the vetter process sequence design considering the number of forming stages and levels of effective strain, effective stress, and forming load during the porcess. In order to optimize the process sequence in producing the final part, cost function was defined and minimized using the proposed A* searching algorithm. For verification of the designed forming sequences, forming experiments and finite element analyses were carried out in the present investigation. The developed expert system using A* searching algorithm can produce a flexible design system based on changes in the number of forming stages and weights.

  • PDF

Mechanical Pressure Drive with Enhanced Downward Velocity Characteristics (슬라이드의 하강속도특성을 개선한 기계프레스의 구동부)

  • 구형욱;최호준;황병복
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.03b
    • /
    • pp.110-120
    • /
    • 1996
  • A crank-slider mechanism is driven by the rotating disk with are crank-pin guide to be applied to the deep drawing and cold forging presses. Load characteristics for different presses are summarized to see the basics of deep drawing of sheet metal and forging in terms of load-stroke relationship. Several types of conventional deep drawing presses are also shown to be compared with the ratating disk-types press. Kinematic performances by thearc guide driving mechanism are anlayzed in terms of load capaicty, stroke, and slide velocity characteristics, and they are compared with those by conventional driving , e.g. Niagara-typepress and so on. Kinematically better performances is shown by arc guide drive than those by conventional ones. The new driving mechanism is also proven to be one of the best for mass production press in terms of short cycle time. Possible applications of the arc guide press to deep drawing and cold forging work are in terms of kinematics and load capacity.

  • PDF

A Study on the Process Planning and Tool Design of Cold Forging Using Personal Computer (II) (PC에 의한 냉간단조 공정 및 금형설계의 자동화에 관한 연구 II)

  • 최재찬;김병민;김형섭;허만조
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.1
    • /
    • pp.190-198
    • /
    • 1989
  • Some Developments in computer aided procedures for cold forging process and tool design of rotationally symmetric cup shape parts are described. The developed system enables appropriate forging sequence to be determined automatically, together with details of corresponding preform, die and punch design. The computer program developed is interactive and written in BASIC. This system not only assist the heavy work of designers but greatly shorten the time of design.

Development of Cold Forging Process for OP Shaft and Improvement of Forgeability of SNCM Steel (OP Shaft용 냉간 단조 성형 공정 개발 및 SNCM강의 단조성 향상에 관한 연구)

  • 이광오;진민호;제진수;남원수;강성수
    • Transactions of Materials Processing
    • /
    • v.12 no.5
    • /
    • pp.473-478
    • /
    • 2003
  • This study presents the enhancement of forgeability of SNCM522H materials. Target parts are output shaft(OP shaft) used as components of power train for automobiles. To carry out cold forging process of OP shaft by 1 pass instead of existing 2 pass process, studies in terms of process design and heat treatment were performed. To introduce the new process, the finite element method was accomplished, and to assess the validity of proposed heat treatment cycle, several experiments(hardness test, observation of optical microstructures, tensile test) were carried out. The 2Pass forging process could be reduced as lPass process through improvement of process and heat treatment technology and that would give cost reduction.