• Title/Summary/Keyword: Cold-forging

Search Result 373, Processing Time 0.021 seconds

FEM Analyses of Hot Forging and Cold Sizing of a Spur Gear (스퍼어기어의 열간단조와 냉간사이징의 유한요소해석)

  • 박종진;이정환
    • Transactions of Materials Processing
    • /
    • v.5 no.2
    • /
    • pp.105-114
    • /
    • 1996
  • Recently, precision forging techniques are applied to manufacture spur gears. Compared to conventional machining, they produce parts of better mechanical properties and less residual stresses with a much higher production rate. In the present investigation a rigid-plastic three dimensional finite element method was applied to analyze hot forging and cold sizing of a spur gear by closed dies. The involute curve of a tooth profile was approximated by a circle close to the curve. Results of the analyses make it possible to predict local strengths of the gear die failure and an appropriate preform for cold sizing. It was found that the preform for cold sizing. It was found that the preform for the cold sizing is the most important because it determines whether the gears especially teeth can be successfully formed.

  • PDF

A Study on Forging Characteristic of Non-Heat Treated Micro-Alloyed Steel Using Finite Element Analysis (유한요소해석을 통한 비조질강 성형 특성 분석)

  • Kwon, Yong-Nam;Kim, S.W.;Lee, Y.S.;Lee, J.H.
    • Transactions of Materials Processing
    • /
    • v.15 no.8 s.89
    • /
    • pp.609-614
    • /
    • 2006
  • Micro-alloyed steels(MA steels) for cold forging was developed to replace the usual quenched and tempered steel. MA steels have several advantages over the conventional quenched and tempered carbon steels. First of all, energy consumption could be lowered due to the elimination of spherodizing annealing and quenching/tempering heat treatment. Also, bending during quenching could be avoided when MA steels are applied for manufacturing of long fastener parts. However, larger amount of load is exerted on the dies compared than in the case of conventional mild steels, which might lead to the earlier fracture of dies, when MA forging steels are applied in forging practice. Therefore, die lift could be a critical factor to determine whether HA forging steels could be widely applied in cold forging practice. In the present study, authors have investigated the forging characteristics of non-heat treated micro-alloyed steel by using a series of experimental and numerical analyses. Firstly, microstructural features and its effect on the deformation behavior have been studied. Numerical analysis has been done on the forging of guide rod pin to investigate for the optimization of forging process and die stress prediction.

Forming Analysis and Design of Cold Gear Forging using 3D Finite Element Method (3차원 유한요소법을 적용한 냉간단조 기어 성형 해석 및 설계)

  • 송종호;김수영;임용택
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.108-111
    • /
    • 2002
  • It is important to predict forming procedure for minimizing trial-and-error in the application of cold forging of gears. In this study, 3-dimensional simulations of cold forging processes of spur and bevel gear were carried out using finite element method to investigate the characteristics of the processes. From the simulation result it was found that incomplete teeth forming of spur gear was occurred with increase of teeth number in forging by forward extrusion. It can be reduced through division of material flows at the initial forming state using forward/backward combined extrusion.

  • PDF

Development of Hot and Cold Forging Process for Manufacturing a Hub of Dual Clutch Transmission (변속기용 허브 부품 제조를 위한 열간 및 냉간 복합단조 공정 개발)

  • Jo, A.R.;Jeong, M.S.;Lee, S.K.;Cho, Y.J.;Hwang, S.K.
    • Transactions of Materials Processing
    • /
    • v.28 no.6
    • /
    • pp.321-327
    • /
    • 2019
  • In this study, a hot and cold forging process was investigated to produce a complex-shaped hub of dual clutch transmission with low material loss and high productivity. The process was designed by the commercial finite element (FE) analysis program, DEFORM-2D (hot forging) and 3D (cold forging). And, the material flow and ductile fracture characteristics were studied to check the surface crack initiation of the specimen. The simulation results indicated that the proposed process could manufacture the complex-shaped hub with no surface crack and high-efficiency compared to the conventional machining process. For verification the numerical results, the hub of the SCM440 was fabricated by the proposed process and the mechanical properties and microstructure evolution were studied. It was demonstrated that the suggested hot and cold forging process might be useful in producing the key components of the automobile industry as a high-efficiency and environmentally friendly process.

A Research on the Life Span extension of Die Block in Cold Forging Die (냉간단조금형에서 다이블록의 수명연장에 관한 연구)

  • Kim, Sei-Hwan;Choi, Kye-Kwang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.2
    • /
    • pp.281-285
    • /
    • 2008
  • Die hobbing is one of the dieblock manufacturing methods of cold forging die, which makes the upper side of dieblock indented using master punch, hobb to produce impression not using cutting work. SKD11, alloy tool steel was used as the material of dieblock and stainless sheet metal was used as product material in cold forging work. The life span of the die was 6,000 strokes. In this research, the material of dieblock was changed into SKH51, the high speed tool steel and the product material was S45C, the carbon steel in the cold forging work. The life span of the die was 21,000 strokes, which is 350% of the life span of the die using the former method.

Measurement and FEM Analysis of Elastic Deformation According to the Forging Stages in Cold Forging Die (냉간단조용 금형의 변형모드에 따른 탄성변형량의 측정 및 유한요소 해석)

  • 이대근;이영선;이정환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.112-116
    • /
    • 2002
  • In cold forging, the elastic behavior of the die has a direct influence on the accuracy of the forging part. And the die dimension is continuously changed during the loading, unloading, and ejecting stage. In this paper, we evaluated the elastic deflections of cold forging die during loading, unloading, and ejecting stage. Uni-axial strain gauges are used to measure elastic strain of die during each forging stage. Strain gauges are attached on the surface of die. A commercial F.E.M code, DEFORM-2D$\^$TM/ is used to predict elastic strain of die. Two method of F.E.M. analysis are used to compare with measured and calculated elastic strain. One is to regard the die as rigid body over forging cycle. And then, the die sass is analyzed by loading the die with pressure from the forging part. The other is to regard the die as elastic body from forging cycle. The elastic strain of die is calculated and the die is elastically deformed at each strop. The calculated results under the elastic die assumption are well agreed with experimental data using strain gauges.

  • PDF

The effect of micro-alloying steel characteristics on the multi-stage forging process (다단 냉간 단조에 미치는 냉간비조질강의 특성에 관한 연구)

  • Lee S. H.;Lee K. T.;Kwon Y. N.;Kim J. H.;Lee J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.317-320
    • /
    • 2005
  • The micro-alloying forging steels have been developed to save energy consumption during forging and subsequent heat treatment stages. The work hardening ability of micro-alloying forging steels is one of major hardening component while it gives severe die damage if the forging process design is poorly set up on the other hand. In the present study, it was tried to characterize three types of micro-alloying forging steels to understand the differences with the conventional low carbon steels used fur cold forging with a spherodizing heat treatment. After forging of a certain forging part with both micro-alloying forging steels and conventional low carbon steel, several mechanical tests were carried out.

  • PDF

A Study on the Development for the Future Compressor Cylinder Block Using of Cold & Hot Forging Method (냉.온간포징법을 이용한 차세대 콤프레샤 실린더 블록 개발에 관한 연구)

  • Kim Soon-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.7
    • /
    • pp.1301-1306
    • /
    • 2006
  • Aluminum alloys are gaining increased acceptance in the automotive and electronic industeries and cold & hot forging is the most efficient method of manufacturing such mass produced parts. This study has been investigated the microstructures and mechanical properties of A6061(Al-1.2Mg-0.8Si) alloy fabricated by cold & hot forging process for development of the future compressor block. The microstructure of cold & hot forginged specimen were composed of eutectic structure aluminum solid solution and $Mg_2Si$ precipitates. The tensile strength of as-solid solution treatment A6061 alloy revealed 291.7MPa. It was fabricated that a trial future compressor cylinder block using cold & hot forging.

Analysis of the upsetting type process for spur gear cold forging using 3D-FEM (3차원 유한요소법을 이용한 Upsetting Type Spur Gear 냉간 단조 공정 해석)

  • Chun S.H.;Lee Y.S.;Kwon Y.N.;Lee J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.135-138
    • /
    • 2004
  • Since the upsetting type is superior to an extrusion type to get the dimensional accuracy of cold forged spur gear, the upsetting type process far spur gear cold forging has been studied. FE analysis of upsetting type process fur spur gear cold forging was performed to investigate about flow pattern of workpiece and die stress. To analyze the elastic characteristics of die, both rigid and elastic material model were used during loading stage. Under-filled defects were detected In lower portions of spur gear forged by upsetting type in experimental. When the elastic material model for die was used, the under-filled defects could be predicted. On the other hand, if the material model of die was rigid, the defects could not been presented because the die deflection was not considered.

  • PDF

Process variables and die life for cold forging (냉간단조용 금형 수명에 미치는 공정 변수의 영향)

  • Lee Y. S.;Choi S. T.;Kwon Y. N.;Rhyim Y. M.;Lee J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.215-218
    • /
    • 2005
  • For the production of cold forged parts with near-net-shape attributes, the quality of the tool system is responsible for an essential portion of costs fer the finished components. Therefore, a tool lift is one of the important issues on cold forging industry. There are many complicated variables related with tool life, such as material, heat-treatment, coating, lubricant, process design. In this study, heat-treatment of tool material and lubricant are investigated to improve the tool life. Deep cryogenic treatment of tool steel is very efficient to improve the wear resistance due to the fine carbide. And, friction factor of lubricants for cold forging are measured by the ring compression test. Zinc-Phosphate and $MoS_2$ lubricant is effective to sustain the friction factor under 0.1.

  • PDF