• Title/Summary/Keyword: Cold tumor

검색결과 84건 처리시간 0.022초

Comparison of Forcep-biopsy and Cryo-biopsy by a Flexible Bronchoscopy (굴곡성 기관지경을 통한 겸자 생검술과 냉동 생검술의 비교)

  • Kim, Jae Hyun;Choi, Jung Min;Song, Sung Eun;Lee, Eun Mi;Lee, Song Ju;Oak, Chul Ho;Jang, Tae Won;Jung, Man Hong;Jang, Hee Kyung
    • Tuberculosis and Respiratory Diseases
    • /
    • 제66권2호
    • /
    • pp.110-115
    • /
    • 2009
  • Background: A forceps-biopsy is performed to acquire tissue from patients with an endobronchial carcinoma using a flexible bronchoscope. Recently, a cryo-biopsy has also been used to acquire tissue samples. Cryo-biopsy is the diagnostic application of extreme cold for the local destruction of abnormal living tissue. This technique is safe, with no radiation danger, no risk of electrical accidents, and a little risk of bleeding. This study compared a forceps-biopsy with a cryo-biopsy using a flexible bronchoscope, and examined the chemosensitivity and level of VEGF (vascular endothelial growth factor) in the specimens obtained from the cryo-biopsy. Methods: We present a prospective study of 30 consecutive patients who underwent a forceps-biopsy between January 2007 and October 2007 with a mean age of 62.1 years and a male:female ratio of 5 : 1. A flexible bronchoscope was inserted to the area of the abnormal lesions, and a cryo-probe was then applied through the working channel of the flexible bronchoscope. A temperature of approximately -h80 was delivered to the tumor site for 8 seconds. The cryo-biopsy was performed after destroying the tumor mass. Results: The mean size of the tissue from the forceps-biopsy and cryo-biopsy were 2.0${\pm}$1.2 mm and 6.0${\pm}$3.0 mm. A chemosensitivity test was performed on 5 specimens obtained using cryo-biopsy and the level of VEGF was examined in 2 specimens obtained from a cryo-biopsy. There were no side effects in either group. Conclusion: Cryo-biopsy using a flexible bronchoscope is a safe and effective technique for acquiring tissue samples.

Analysis of the Causes of Subfrontal Recurrence in Medulloblastoma and Its Salvage Treatment (수모세포종의 방사선치료 후 전두엽하방 재발된 환자에서 원인 분석 및 구제 치료)

  • Cho Jae Ho;Koom Woong Sub;Lee Chang Geol;Kim Kyoung Ju;Shim Su Jung;Bak Jino;Jeong Kyoungkeun;Kim Tae_Gon;Kim Dong Seok;Choi oong-Uhn;Suh Chang Ok
    • Radiation Oncology Journal
    • /
    • 제22권3호
    • /
    • pp.165-176
    • /
    • 2004
  • Purpose: Firstly, to analyze facto in terms of radiation treatment that might potentially cause subfrontal relapse in two patients who had been treated by craniospinal irradiation (CSI) for medulloblastoma, Secondly, to explore an effective salvage treatment for these relapses. Materials and Methods: Two patients who had high-risk disease (T3bMl, T3bM3) were treated with combined chemoradiotherapy CT-simulation based radiation-treatment planning (RTP) was peformed. One patient who experienced relapse at 16 months after CSI was treated with salvage surgery followed by a 30.6 Gy IMRT (intensity modulated radiotherapy). The other patient whose tumor relapsed at 12 months after CSI was treated by surgery alone for the recurrence. To investigate factors that might potentially cause subfrontal relapse, we evaluated thoroughly the charts and treatment planning process including portal films, and tried to find out a method to give help for placing blocks appropriately between subfrotal-cribrifrom plate region and both eyes. To salvage subfrontal relapse in a patient, re-irradiation was planned after subtotal tumor removal. We have decided to treat this patient with IMRT because of the proximity of critical normal tissues and large burden of re-irradiation. With seven beam directions, the prescribed mean dose to PTV was 30.6 Gy (1.8 Gy fraction) and the doses to the optic nerves and eyes were limited to 25 Gy and 10 Gy, respectively. Results: Review of radiotherapy Portals clearly indicated that the subfrontal-cribriform plate region was excluded from the therapy beam by eye blocks in both cases, resulting in cold spot within the target volume, When the whole brain was rendered in 3-D after organ drawing in each slice, it was easier to judge appropriateness of the blocks in port film. IMRT planning showed excellent dose distributions (Mean doses to PTV, right and left optic nerves, right and left eyes: 31.1 Gy, 14.7 Gy, 13.9 Gy, 6.9 Gy, and 5.5 Gy, respectively. Maximum dose to PTV: 36 Gy). The patient who received IMRT is still alive with no evidence of recurrence and any neurologic complications for 1 year. Conclusion: To prevent recurrence of medulloblastoma in subfrontal-cribriform plate region, we need to pay close attention to the placement of eye blocks during the treatment. Once subfrontal recurrence has happened, IMRT may be a good choice for re-irradiation as a salvage treatment to maximize the differences of dose distributions between the normal tissues and target volume.

THE CURRENT STATUS OF BIOMEDICAL ENGINEERING IN THE USA

  • Webster, John G.
    • Proceedings of the KOSOMBE Conference
    • /
    • 대한의용생체공학회 1992년도 춘계학술대회
    • /
    • pp.27-47
    • /
    • 1992
  • Engineers have developed new instruments that aid in diagnosis and therapy Ultrasonic imaging has provided a nondamaging method of imaging internal organs. A complex transducer emits ultrasonic waves at many angles and reconstructs a map of internal anatomy and also velocities of blood in vessels. Fast computed tomography permits reconstruction of the 3-dimensional anatomy and perfusion of the heart at 20-Hz rates. Positron emission tomography uses certain isotopes that produce positrons that react with electrons to simultaneously emit two gamma rays in opposite directions. It locates the region of origin by using a ring of discrete scintillation detectors, each in electronic coincidence with an opposing detector. In magnetic resonance imaging, the patient is placed in a very strong magnetic field. The precessing of the hydrogen atoms is perturbed by an interrogating field to yield two-dimensional images of soft tissue having exceptional clarity. As an alternative to radiology image processing, film archiving, and retrieval, picture archiving and communication systems (PACS) are being implemented. Images from computed radiography, magnetic resonance imaging (MRI), nuclear medicine, and ultrasound are digitized, transmitted, and stored in computers for retrieval at distributed work stations. In electrical impedance tomography, electrodes are placed around the thorax. 50-kHz current is injected between two electrodes and voltages are measured on all other electrodes. A computer processes the data to yield an image of the resistivity of a 2-dimensional slice of the thorax. During fetal monitoring, a corkscrew electrode is screwed into the fetal scalp to measure the fetal electrocardiogram. Correlations with uterine contractions yield information on the status of the fetus during delivery To measure cardiac output by thermodilution, cold saline is injected into the right atrium. A thermistor in the right pulmonary artery yields temperature measurements, from which we can calculate cardiac output. In impedance cardiography, we measure the changes in electrical impedance as the heart ejects blood into the arteries. Motion artifacts are large, so signal averaging is useful during monitoring. An intraarterial blood gas monitoring system permits monitoring in real time. Light is sent down optical fibers inserted into the radial artery, where it is absorbed by dyes, which reemit the light at a different wavelength. The emitted light travels up optical fibers where an external instrument determines O2, CO2, and pH. Therapeutic devices include the electrosurgical unit. A high-frequency electric arc is drawn between the knife and the tissue. The arc cuts and the heat coagulates, thus preventing blood loss. Hyperthermia has demonstrated antitumor effects in patients in whom all conventional modes of therapy have failed. Methods of raising tumor temperature include focused ultrasound, radio-frequency power through needles, or microwaves. When the heart stops pumping, we use the defibrillator to restore normal pumping. A brief, high-current pulse through the heart synchronizes all cardiac fibers to restore normal rhythm. When the cardiac rhythm is too slow, we implant the cardiac pacemaker. An electrode within the heart stimulates the cardiac muscle to contract at the normal rate. When the cardiac valves are narrowed or leak, we implant an artificial valve. Silicone rubber and Teflon are used for biocompatibility. Artificial hearts powered by pneumatic hoses have been implanted in humans. However, the quality of life gradually degrades, and death ensues. When kidney stones develop, lithotripsy is used. A spark creates a pressure wave, which is focused on the stone and fragments it. The pieces pass out normally. When kidneys fail, the blood is cleansed during hemodialysis. Urea passes through a porous membrane to a dialysate bath to lower its concentration in the blood. The blind are able to read by scanning the Optacon with their fingertips. A camera scans letters and converts them to an array of vibrating pins. The deaf are able to hear using a cochlear implant. A microphone detects sound and divides it into frequency bands. 22 electrodes within the cochlea stimulate the acoustic the acoustic nerve to provide sound patterns. For those who have lost muscle function in the limbs, researchers are implanting electrodes to stimulate the muscle. Sensors in the legs and arms feed back signals to a computer that coordinates the stimulators to provide limb motion. For those with high spinal cord injury, a puff and sip switch can control a computer and permit the disabled person operate the computer and communicate with the outside world.

  • PDF

Immunomodulatory Effects of Fermented Curcuma longa L. Extracts on RAW 264.7 Cells (RAW 264.7 세포에서 발효 울금 추출물의 면역조절 효과)

  • Yoo, Seon A;Kim, Ok Kyung;Nam, Da-Eun;Kim, Yongjae;Baek, Humyoung;Jun, Woojin;Lee, Jeongmin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • 제43권2호
    • /
    • pp.216-223
    • /
    • 2014
  • Curcuma longa L. (CL) is a well known traditional medicinal plant that is also used in curries and mustards as a coloring and flavoring agent. However, CL is not usually used as a food source due to its bitter taste. We investigated the immunomodulatory effect of CL fermented by Aspergillus oryzae (FCL) on RAW 264.7 cells. FCL was extracted with cold water (CW), hot water (HW), 20% ethanol (20% EtOH) and 80% ethanol (80% EtOH), after which its effects on phagocytic activity, tumor necrosis factor-alpha (TNF-${\alpha}$), nitric oxide (NO) production, natural killer (NK) cell activity and mRNA expression of LP-BM5 eco were investigated. Phagocytic activity was increased in HW and 20% EtOH when compared to the control. The secretion of nitric oxide (NO) from RAW 264.7 cells did not change significantly relative to the control. However, TNF-${\alpha}$ was significantly increased by the addition of FCL extracts. Moreover, FCL 20% ethanol extract showed a four fold increase in NK cell cytotoxity relative to the control group. Finally, we observed suppressed mRNA expression of LP-BM5 eco in FCL extracts, especially in the 20% ethanol extracts group. These results indicate that the FCL extracts can be used as a functional material due to their effective immunomodulating activities.