• 제목/요약/키워드: Cold gas flow

검색결과 223건 처리시간 0.022초

300MW급 IGCC를 위한 건식 분류층 석탄 가스화 공정의 동적 상태 모사 (The Process Simulation of Entrained Flow Coal Gasification in Dynamic State for 300MW IGCC)

  • 김미영;주용진;최인규;이중원
    • 한국수소및신에너지학회논문집
    • /
    • 제21권5호
    • /
    • pp.460-469
    • /
    • 2010
  • To develop coal gasfication system, many studies have been actively conducted to describe the simulation of steady state. Now, it is necessary to study the gasification system not only in steady state but also in dynamic state to elucidate abnormal condition such as start-up, shut-down, disturbance, and develop control logic. In this study, a model was proposed with process simulation in dynamic state being conducted using a chemical process simulation tool, where a heat and mass transfer model in the gasifier is incorporated, The proposed model was verified by comparison of the results of the simulation with those available from NETL (National Energy Technology Laboratory) report under steady state condition. The simulation results were that the coal gas efficiency was 80.7%, gas thermal efficiency was 95.4%, which indicated the error was under 1 %. Also, the compositions of syngas were similar to those of the NETL report. Controlled variables of the proposed model was verified by increasing oxygen flow rate to gasifier in order to validate the dynamic state of the system. As a result, trends of major process variables were resonable when oxygen flow rate increased by 5% from the steady state value. Coal flow rate to gasifier and quench gas flow rate were increased, and flow rate of liquid slag was also increased. The proposed model in this study is able to be used for the prediction of gasification of various coals and dynamic analysis of coal gasification.

막응축 열전달에서 공기-수증기 혼합기체의 속도 및 온도분포 (Velocity and Temperature Profiles of Steam-Air Mixture on the Film Condensation)

  • 강희찬;김무환
    • 대한기계학회논문집
    • /
    • 제18권10호
    • /
    • pp.2675-2685
    • /
    • 1994
  • A study has been conducted to provide the experimental information for the velocity and temperature profiles of steam-air mixutre and to investigate their roles on the film condensation with wavy interface. Saturated gas mixture of steam-air was made to flow through the nearly horizontal$(4.1^{\circ})$ square duct of 0.1m width and 1.56m length at atmospheric pressure, and was condensated on the bottom cold plate. The air mass fraction in the gas mixture was changed from zero(W =0, pure steam) to one(W =1, pure air), and the bulk velocity was varied from 2 to 4 m/s. Water film was injected concurrently to investigate the effect of wavy interface on the condensation. The velocity and temperature profiles were measured by LDA system and thermocouples along the three parameters ; air mass fraction, mixture velocity and film flow rate. The profiles moved toward the interface with increasing steam mass fraction, mixture velocity and film flow rate. The Prandtl and Schmidt numbers were near one in the present experimental range, however there was no complete similarity between the velocity and temperature profiles of gas mixture. And the heat transfer characteristics and interfacial structure were coupled with each other.

석탄화력발전소 보일러 튜브 마모 문제에 관한 저온공기 속도 측정법 적용 및 검증 (Application and Verification of Cold Air Velocity Technique for Solving Tube Ash Erosion Problem in PC Boilers)

  • 유기수;정권석
    • 대한기계학회논문집B
    • /
    • 제36권6호
    • /
    • pp.663-668
    • /
    • 2012
  • 비산회에 의한 보일러 튜브 마모 문제는 석탄화력 보일러 튜브 파손에 주요한 요인이 된다. 때문에 튜브 보호막이나 다공판 등이 마모 문제 완화를 위하여 사용되고 있다. 그러나 비산회에 의한 튜브마모 문제는 이런 방법을 통하여 완전히 해결될 수 없는데 이는 보일러 마다 유동 조건이 다를 뿐만아니라 예상치 못한 위치에서 국부적으로 마모가 심화될 수 있기 때문이다. 문제는 보일러 내부 비대칭 유동과 국부적 유속 증가에서 기인함으로 튜브 마모 문제의 해결에 있어서 보일러 내부 유동을 명확히 파악하는 것이 무엇 보다 중요하다 하겠다. 본 연구에서는 튜브 마모 문제에 해결을 위해 사용되는 Cold Air Velocity Technique(CAVT)에 대하여 고찰하고 하동화력 2호기 보일러에 대하여 CAVT를 실제 적용함으로써 석탄화력 보일러에 있어서 CAVT 적용 가능성을 검증하였다.

가솔린 엔진의 밸브타이밍 변화가 부분부하 조건에서 잔류가스량 및 연소특성에 미치는 영향 (Effect of Value Timing on Residual Gas Fraction and Combustion Characteristics at Part Load Condition in an SI Engine)

  • 김철수;송해박;이종화;유재석;조한승
    • 한국자동차공학회논문집
    • /
    • 제8권4호
    • /
    • pp.26-33
    • /
    • 2000
  • In-cylinde flow and mixture formation are key contributors to both idle stability and combustion stability at part load condition in SI engine. The real time measurements of air-fuel ration and in- cylinder residual gas fraction are particularly important to obtain a better understanding of the mechanisms for combustion and emissions especially during cold start and throttle transient condition. This paper reports the cycle resolved measurements of residual gas fraction and equivalence ration near speak plug with value timing change and their effects on combustion characteristics at part load. The results showed that the effect of intake value opening on the residual gas fraction was smaller than that of exhaust valve closing because of the decreases of exhaust gas reverse flow from exhaust port. The variation of equivalence ratio near spark plug increased with the increase of value overlap and it closely related with heat release rate and combustion stability

  • PDF

GaN 에피층 성장을 위한 MOCVD 반응로의 가스 유동에 관한 수치해석 (Numerical Analysis on the Gas Flows in MOCVD Reactor for the Growth of GaN Epitaxy)

  • 신창용;백병준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.770-775
    • /
    • 2001
  • Numerical calculation has been performed to investigate the fluid flow, heat transfer and local mass fraction of chemical species in the MOCVD (metalorganic chemical vapor deposition) manufacturing process. The mixing of reactants (trimethylgallium with hydrogen gas and ammonia) was presented by the concentration of each reactants to predict the uniformity of film growth. Effects of inlet size, location, mass flow rate and susceptor/cold wall tilt angle on the concentration were reported. The newly developed reactor, that precursors were supplied at separated inlet to prevent from premixing, was investigated to obtain the quantitative verification. As a results, the optimum mass flow rate, wall tilt angle and inlet conditions were proposed.

  • PDF

마이크로 콜드 가스 추력기의 선행 연구 (Preliminary Study of Micro Cold Gas Thruster)

  • Seonghwan Moon;Hwayoung Oh;Hwanil Huh
    • 한국추진공학회지
    • /
    • 제8권2호
    • /
    • pp.54-61
    • /
    • 2004
  • 추진 시스템을 포함해 구성요소의 소형화가 최근 위성체 기술의 경향이다. 소형위성 추진기관은 크기 축소라는 기술적 도전일 뿐만 아니라, 기본적인 유동/연소 구속조건의 결합을 보이고 있다. 본 논문에서는 냉각 가스 마이크로 추력기에서 마이크로 노즐의 물리적 구속조건에 대해 살펴보았다. 또한 미소 추력의 측정 방법에 대해서도 언급하였다.

분류층 건식 석탄가스화기에서의 가스화 특성 (Gasification characteristics in an entrained flow coal gasifier)

  • 유영돈;윤용승;안달홍;박호영
    • 대한기계학회논문집B
    • /
    • 제21권12호
    • /
    • pp.1690-1700
    • /
    • 1997
  • Entrained coal gasification tests with Datong coal were performed to assess the influence of oxygen/coal ration and pressure. When gasification condition in oxygen/coal ratio has changed from 0.5 to 1.0, optimal gasification condition from low pressure runs was oxygen/coal ratio of approximately 0.9 where CO was produced about 40% and H, about 20%. Under the pressure condition of 12-14 atmospheres, optimal oxygen/coal ratio value was in the region of 0.6 where CO was produced about 55% and H2about 25%. From these results, it was found that the oxygen/ coal ratio for the maximum production of CO and H, was decreasing with the increase in gasifier pressure and also, with increasing oxygen content, carbon conversion was increased. For the Chinese Datong coal, cold gas efficiency was in the range of 40-80%.

LNG 냉열을 이용하는 동력사이클 열역학 해석 (Thermodynamic Analysis of Power Generation Cycle Utilizing LNG Cold Energy)

  • 최권일;장홍일
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제1권1호
    • /
    • pp.48-55
    • /
    • 1999
  • thermodynamic cycle analysis has been performed for the power generation systems to utilize the cold energy of liquefied natural gas (LNG). The power cycle used the air or water at room temperature as a heat source and the LNG at cryogenic temperature as a heat sink. Among manypossible configurations of the cycle. the open Rankine cycle. and the closed Brayton cycle, and the closed Rankine cycle are selected for the basic analysis because of their practical importance. The power output per unit mass of LNG has been analytically calculated for various design parameters such as the pressure ratio. the mass flow rate. the adiabatic efficiency. the heat exchanger effectiveness. or the working fluid. The optimal conditions for the parameters are presented to maximize the power output and the design considerations are discussed. It is concluded that the open Rankine cycle is the most recormmendable both in thermodynamic efficency and in practice.

  • PDF

건식 석탄공급형 1 Ton/Day급 가스화시스템 설계조건 및 시운전결과 (The Design Conditions and the Initial Operation Results of 1 Ton/Day Class Dry Feeding Coal-Gasification System)

  • 서혜경;정재화;주지선
    • 한국수소및신에너지학회논문집
    • /
    • 제20권4호
    • /
    • pp.352-359
    • /
    • 2009
  • KEPRI is developing a Korean type coal-gasification system and the scale is 20 ton/day. Prior to this pilot plant, a 1 ton/day class gasification system will be used for pre-testing of several coal types. This paper introduces the configuration and design conditions of this 1 ton/day class system, presenting the gas/coal ratio, oxygen/coal ratio, cold gas efficiency, CFD analysis of gasifier, and others. The existing combustion furnace for residual oil was retrofitted as a coal gasifier and a vertical and down-flow type burner was manufactured. Ash removal is carried out through a water quencher and a scrubber following the quencher, and the sulfur is removed by adsorption in the activated carbon tower. The gas produced from the gasifier is burned at the flare stack. In this paper, the results of design conditions and initial operation conditions of I ton/day gasification system are compared together.

액화천연가스를 활용한 개방형 랭킨 사이클에 적용한 냉열 발전의 최적화에 대한 연구 (Optimization Study on the Open-Loop Rankine Cycle for Cold Heat Power Generation Using Liquefied Natural Gas)

  • 김영우;이중성;이종집;김동선;조정호
    • 한국수소및신에너지학회논문집
    • /
    • 제28권3호
    • /
    • pp.295-299
    • /
    • 2017
  • In this study, computer simulation and optimization works have been performed for an open-loop Rankine cycle to generate power using five cases of liquefied natural gas compositions. PRO/II with PROVISION V9.4 from Schneider electric company was used, and the Soave-Redlich-Kwong equation of the state model was utilized for the design of the power generation cycle. It was concluded that more power was obtained from less molecular weight liquefied natural gas since there was more volumetric flow rate with less molecular weight.