• Title/Summary/Keyword: Cold forming process

Search Result 238, Processing Time 0.027 seconds

A Study on Stucture of CAD / CAPP System in th e Heading Process Using Rigid-Plastic Finite Element Analysis (강소성 유한 요소법을 이용한 냉간 2단 헤딩가공에 있어서 CAD / CAPP 시스템의 구축에 대한 연구 1))

  • 신영우
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.30 no.1
    • /
    • pp.53-63
    • /
    • 1994
  • The conventional cold-heading process for the production of a bolt-shaped product is composed of some process and two or three blows heading. The strength of a bolt-shaped product produced by multi-blow heading depends on the working conditions of the heading process such as preforming die angle, corner-radius of the necked portion of product, and the reduction in height during pre-forming. Arigid-plastic finite-element program(RDHPSC) has been coded and the program testified by comparison with the results of experimentation. A method of testing the optimum die-conditions in the double-blow heading process by use of RDHPSC analysis is discussed a fundamental structures of CAD/CAPP system for two-blow heading process is discussed.

  • PDF

Quantitative Evaluation of Wear Resistance of Stamping Tool with Respect to Hardness of Tool Materials in Cold Stamping of TRIP1180 Steel Sheets (TRIP1180 판재의 냉간 스탬핑공정에서 금형강의 경도 특성에 따른 내마모성 평가)

  • Bang, J.H.;Bae, G.;Song, J.H.;Kim, H.G.;Lee, M.G.
    • Transactions of Materials Processing
    • /
    • v.31 no.3
    • /
    • pp.129-135
    • /
    • 2022
  • The purpose of this study was to quantitatively evaluate the influence of hardness of tool materials on wear resistance in the sheet metal forming process. Punches used in the wear test were made of STD-11 and K340 tool material, and the tempering temperature was set to 530℃ and 500℃, respectively, to control the hardness of the tool materials. The punches mimic the shape of stamping tool of automotive body component to reflect its plastic deformation, and are designed to concentrate wear on the curvature region of punches. Progressive die and coil sheet were used to save time, cost, and raw sheet materials. By quantitatively measuring the wear depth of the punches, the wear behavior and mechanism of the punches were investigated, and characteristics of hardness and wear resistance according to tool materials and tempering temperatures were evaluated. Testing results indicate that the punch made of K340 tool steel with higher hardness had better wear resistance than that of STD-11 tool steel, and the hardness and wear resistance of tool steel were significantly impacted by the tempering temperature.

Fabrication of Micro Component of Metallic Nano Powder Using Polymer Mold (폴리머 몰드를 이용한 금속 나노분말의 미세부품 제조)

  • Lee, Woo-Seok;Kim, Sang-Phil;Lee, Hye-Moon;Bae, Dong-Sik;Choi, Chul-Jin
    • Journal of Powder Materials
    • /
    • v.14 no.3 s.62
    • /
    • pp.202-207
    • /
    • 2007
  • Novel polymer mold process for fabrication of microcomponents using metal nanopowders was developed and experimentally optimized. Polymer mold for forming green components was produced by using a hard master mold and polydimethylsiloxane (PDMS). In the preparation of metallic powder premix for the green components without any defect, 90 wt.% 17-4PH statinless steel nanopowders and 10 wt.% organic binder were mixed by a ball milling process. The green components with very clear gear shape were formed by filling the powder premix into the PDMS soft mold in surrounding at about $100^{\circ}C$. Cold isostatic pressing (CIP) was very potent process to decrease a porosity in the sintered microcomponent. The microgear fabricated by the improved process showed a good dimension tolerance of about 1.2%.

OPTIMAL PROCESSING AND SYSTEM MANUFACTURING OF A LASER WELDED TUBE FOR AN AUTOMOBILE BUMPER BEAM

  • Suh, J.;Lee, J.H.;Kang, H.S.;Park, K.T.;Kim, J.S.;Lee, M.Y.;Jung, B.H.
    • International Journal of Automotive Technology
    • /
    • v.7 no.2
    • /
    • pp.209-216
    • /
    • 2006
  • A study has been conducted for an optimal processing and an apparatus for manufacturing a laser welded tube for one-body formed bumper beam. The tube dimensions used in calculation were the thickness of 1.4 mm, the diameter of 105.4 mm and the length of 2000 mm. The tube was formed of a cold rolled high strength steel plate(tensile strength of 600 MPa). The two-roll bending method was the optimal tube forming process in comparison with the UO-bending method, the bending method on the press brake, the multi-step continuous roll-forming method and the 3-roll bending method. Monitoring of the welding quality was conducted and the seam tracking along the butt-joint lengthwise to the tube axis was also examined. The longitudinal butt-joint was welded by using a $CO_2$ laser welding machine equipped with a seam tracker and a plasma sensor. The $CO_2$ laser tube welding machine could be used for precise seam tracking and real-time monitoring of the welding quality. As a result, the developed laser welded tube could be used for a one-body formed automobile bumper beam.

The Study for Cold Forging of Spline with Different Friction Factor on Die Surface (금형면 마찰조건을 달리한 스플라인 단조에 관한 연구)

  • Kim, Kwan-Woo;Lee, Seok-Jin;Kim, Moon-Ki;Cho, Seong-Yeol;Cho, Hae-Yong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.295-303
    • /
    • 2009
  • Forging of square spline was investigated by using finite element methods in this study. Spline is widely used by torque transmitter in the fields of automobile, aircraft, and shipping etc. Friction on the surface of die is regarded as the most important factor to improve the dimensional accuracy for complete forming of spline teeth. Finite element simulation was carried out to improve the formability of the spline, especially remove unnecessary burrs which were extruded in gap between the die and the punch. To remove the burrs, various friction factors are considered on the surfaces of the die in the simulations and punch flat surface was designed. The simulated results were compared with experimental ones. As a results, it is possible to control the growth of burrs and improve formability of spline teeth by applying various friction factors and design of punch flat surface.

forming of High Density Bevel Gear for Industrial Machinery (산업기계용 고밀도 Bevel Gear 제품화를 위한 성형성 연구)

  • 임성주;윤덕재;최석우;박훈재;김승수;나경환
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.2 no.1
    • /
    • pp.1-6
    • /
    • 2001
  • This study is concerned with the cold forging of sintered preform by rotary forging process and direct powder compacting process. An experiment has been carried out using the rotary powder forging press (500kN) which had been designed and equipped with the rotational conical die inclined to the central axis of the press at certain angle The effect of process variables was observed and measured by several mechanical test, such as hardness distribution density, and microstructure of the specimens. It is found that the highly densified P/M parts can be obtained and this process is very effective for improving quality of the powder products.

  • PDF

Springback tendency with the variable blank holding force in the drawing process of the UHSS (초고강도강판 드로잉 성형에서 가변 블랭크 홀딩력에 의한 스프링백 경향)

  • Kwak, Jung-Hwan;Jung, Chul-Young;Kim, Se-Ho;Song, Jung-Han
    • Design & Manufacturing
    • /
    • v.12 no.3
    • /
    • pp.60-65
    • /
    • 2018
  • The production of the automotive parts with the ultra high strength steel usually involves large amount of springback as well as fracture during the cold stamping process. Variable blank holding force(VBHF) can be used as one of the effective process parameters to reduce the springback amount with achieving better condition of formability. In this paper, VBHF with respect to the punch stroke is applied to the stamping process of the front side rear lower member for reducing the springback amount. From the analyses with constant blank holding force(CBHF), 24 kinds of VBHF conditions are utilized to investigate the springback tendency. It is noted that springback can be effectively reduced when BHF is increased near the bottom dead center because VBHF provides the tensile force to the blank with an adequate level of deformation without fracture.

Design of punch shape for reducing the punch wear in the backward extrusion (후방 압출 펀치의 마멸 저감을 위한 금형 형상 설계)

  • 박태준;이동주;김동진;김병민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.575-578
    • /
    • 2000
  • Die design to minimize the die wear in the cold forging process is very important as it reduce the production cost and the increase of the production rate. The quantitative estimation for the die wear is too hard because the prediction of the die wear is determined with many process variables. So, in this paper, the optimal shape of the backward extrusion punch is newly designed through the FE-analysis considering the surface expansion and Archard's wear model in order to reduce the rapid wear rate that is generated for the backward extrusion product exceeding the forming limit. The main shape variables of the backward extrusion punch are the flat, angle, and round of the punch nose part. As the flat and angle of the punch nose are larger, the surface expansion is reduced. and, the wear rate is decreased according to the reduction of the punch round. These results obtained through this study are applied to the real manufacturing process, it is implemented the reduction of the wear rate.

  • PDF

Design of Punch Shape for Reducing the Punch Wear in the Backward Extrusion (후방 압출 펀치의 마멸 저감을 위한 펀치 형상 설계)

  • Kim Dong Hwan;Lee Jung Min;Kim Byung Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.180-187
    • /
    • 2004
  • Die design to minimize the die wear in the cold forging process is very important as it reduce the production cost and the increase of the production rate. The quantitative estimation fur the die wear is too hard because the die wear is caused by many process variables. So, in this paper, the optimal shape of the backward extrusion punch is newly designed through the FE-analysis considering the surface expansion and Archard wear model in order to reduce the rapid wear rate that is generated for the backward extruded products exceeding the forming limit. The main shape variables of the backward extrusion punch are the flat diameter, angle, and round of the punch nose part. As the flat diameter and angle of the punch nose are larger, the surface expansion is reduced and the wear rate is decreased according to the reduction of the punch round. These results obtained through this study can be applied to the real manufacturing process.

Design of a Multi-Step Warm Heading Process for Subminiature Screws (초소형 스크류 온간 다단 헤딩공정 연구)

  • Jang, Yeon Hui;Jeong, Jin Hwan;Jang, Myung Guen;Hong, Jae-Keun;Kim, Jong-Bong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.2
    • /
    • pp.83-87
    • /
    • 2017
  • A multi-step warm forging process for subminiature screws is investigated. Due to the low formability of Titanium alloys, bit forming of Titanium screws is difficult by cold forging. In order to overcome this low formability of Titanium alloys, two candidate processes, i.e., multi-step forging and warm forging are introduced. First, a multi-step (two-step) forging process is investigated. The punch shape and stroke of forging during the first step is designed via various analyses. Finally, the bit formability is investigated at different forging temperatures. Analyses are carried out for two-step forging at various temperatures and the formability under these thermal conditions is compared.