• Title/Summary/Keyword: Cold flow model

Search Result 239, Processing Time 0.026 seconds

Numerical Analyses to Simulate Thermal Stratification Phenomenon in a Piping System (배관계통에서의 열성층 현상 모사를 위한 수치해석)

  • Jeong, Jae-Uk;Kim, Sun-Hye;Chang, Yoon-Suk;Choi, Jae-Boong;Kim, Young-Jin;Kim, Jin-Su;Chung, Hae-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.5
    • /
    • pp.381-388
    • /
    • 2009
  • In some portions of nuclear piping systems, stratification phenomena may occur due to the density difference between hot and cold stream. When the temperature difference is large, the stratified flow under diverse operating conditions can produce high thermal stress, which leads to unanticipated piping integrity issues. The objectives of this research are to examine controvertible numerical factors such as model size, grid resolution, turbulent parameters, governing equation, inflow direction and pipe wall. Parametric three-dimensional computational fluid dynamics analyses were carried out to quantify effects of these parameters on the accuracy of temperature profiles in a typical nuclear piping with complex geometries. Then, as a key finding, it was recommended to use optimized mesh of real piping with the conjugated heat transfer condition for accurate thermal stratification analyses.

Integral Approximate Solutions to a One-Dimensional Model for Stratified Thermal Storage Tanks (성층화된 축열조의 1차원모델에 대한 적분 근사해)

  • Chung, Jae-Dong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.7
    • /
    • pp.468-473
    • /
    • 2010
  • This paper deals with approximate integral solutions to the one-dimensional model describing the charging process of stratified thermal storage tanks. Temperature is assumed to be the form of Fermi-Dirac distribution function, which can be separated to two sets of cubic polynomials for each hot and cold side of thermal boundary layers. Proposed approximate integral solutions are compared to the previous works of the approximate analytic solutions and show reasonable agreement. The approach, however, has benefits in mathematical difficulties, complicated solution form and unstable convergence of series solution founded in the previous analytic solutions. Solutions for a semi-infinite region, which have simple closed form solutions, give close agreement to those for a finite region. Thermocline thickness is obtained in closed form and shows proportional behavior to the square root of time and inverse proportional behavior to the square root of flow rate.

Performance Tests on Parallel Plate Type Solar Air Heater (공기식 평행판형 태양집열기 성능실험)

  • Cha Jong Hee;Song Hi Yul
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.6 no.4
    • /
    • pp.255-261
    • /
    • 1977
  • This study was concerned with the performance of solar air heater using parallel channels. Heat transmission model was developed and fabricated to increase the economic feasibility for solar heating system by using the cheap zinc plate. The prformance was discussed as a function of mass flow rate, and plate, inlet and outlet temperatures. Experimental results show that heat transmission model is sufficient for the analysis of thermal characteristics of air heater and collection efficiency is better than the domestic water heater, as the range 32-49 percent. Collection efficiency in the 2 layers of glass cover is better than that in 1 layer, so it is considered better to use the 2 layers of glass cover during the cold winter season in Korea.

  • PDF

Combined raidation-forced convection in a circular tube flow (원관내 유동에서의 복사 및 강제대류 열전달에 관한 연구)

  • 임승욱;이준식;이택식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1652-1660
    • /
    • 1990
  • Combined radiative-convective heat transfer in a hot gas tube flow has been investigated numerically and experimentally. In the numerical analysis, a standard k-.epsilon. model is used for the evaluation of turbulent shear stresses and spherical harmonics method with the Weighted Sum of Gray Gases Model for the solution of radiative transfer equation. In the experimental study measured are the velocity and temperature of the hot gas flow generated by the propane gas combustion, and tude wall heat flux distribution. Numerical results are compared with experimental ones and it is confirmed that P-3 provides quite reliable results in the analysis of the combined radiation-convection system.

Analysis of LBLOCA of APR1400 with 3D RPV model using TRACE

  • Yunseok Lee;Youngjae Lee;Ae Ju Chung;Taewan Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1651-1664
    • /
    • 2023
  • It is very difficult to capture the multi-dimensional phenomena such as asymmetric flow and temperature distributions with the one-dimensional (1D) model, obviously, due to its inherent limitation. In order to overcome such a limitation of the 1D representation, many state-of-the-art system codes have equipped a three-dimensional (3D) component for multi-dimensional analysis capability. In this study, a standard multi-dimensional analysis model of APR1400 (Advanced Power Reactor 1400) has been developed using TRACE (TRAC/RELAP Advanced Computational Engine). The entire reactor pressure vessel (RPV) of APR1400 has been modeled using a single 3D component. The fuels in the reactor core have been described with detailed and coarse representations, respectively, to figure out the impact of the fuel description. Using both 3D RPV models, a comparative analysis has been performed postulating a double-ended guillotine break at a cold leg. Based on the results of comparative analysis, it is revealed that both models show no significant difference in general plant behavior and the model with coarse fuel model could be used for faster transient analysis without reactor kinetics coupling. The analysis indicates that the asymmetric temperature and flow distributions are captured during the transient, and such nonuniform distributions contribute to asymmetric quenching behaviors during blowdown and reflood phases. Such asymmetries are directly connected to the figure of merits in the LBLOCA analysis. Therefore, it is recommended to employ a multi-dimensional RPV model with a detailed fuel description for a realistic safety analysis with the consideration of the spatial configuration of the reactor core.

Characteristics and Modeling Analysis of Entrained Flow Gasifiers (분류층 가스화기 특징 및 공정모사 분석)

  • Yoo, Jeongseok;Kim, Youseok;Paek, Minsu
    • New & Renewable Energy
    • /
    • v.9 no.3
    • /
    • pp.20-28
    • /
    • 2013
  • The gasification process has developed to convert coal into the more useful energy and material since decades. Despite the numberous design of ones, entrained flow gasifier of the major companies has had an advantage on the market. Because it has a merit of full-scale and high performance plant. In this paper, the gasification technologies of GE energy, Phillips, Siemens and Shell have been reviewed to compare their characteristics and a high performance gasification process was suggested. And the simulation model of gasifiers using Aspen Plus offered the quantitative comparison data for difference designs. The simulation results revealed the poor performance of the slurry feed than dry design. The corresponding cold gas efficiency of 77% is much lower than the 80.3% for the dry feed cases. The exergy analysis of the difference syngas quenching system showed that chemical quenching is superior to another. The results of analysis recommend the two stage gasifier with dry multi-feeder as the energy effective design.

Gasdynamic Adjustment at Modeling of Flight Conditions Appropriate M=6

  • 우관제
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.8-8
    • /
    • 2000
  • In this paper are presented main power and gasdynamic characteristics of C-l6VK hypersonic test cell of Research Test Center of CIAM. Gasdynamic adjustment of the C-l6VK test cell was carried out with the working section constructed on scheme of Ramjet/scramjet test in free stream. Gasdynamic adjustment was conducted stage by stage in tile following sequence. First, check and preparation of all technical systems and checking measuring system. Than determination of the characteristics of test cell on cold (without the heating of air at entrance) regime and determination of the characteristics of test cell on regimes with the heating of air. Finally determination of tile characteristics of test cell with the loading of the working part by object. On tile final stage of gasdynamic adjustment two experiments with tile axisymmetric Scramjet model loaded into the working part of test cell were conducted. The first experiment was conducted with the purpose of determination of flow parameters with the object leaded into the working part and verification of experiment cyclogram. The second experiment was conducted with injection of hydrogen into the combustion chamber of object, that is tile conditions on test cell simulated Scramjet flight Mach number M = 6. Such methodology of gasdynamic adjustment allows to determine influence of experimental object on flow parameters in the working part at different conditions of experiment (with the burning in combustion chamber of object and without the homing), and also to compare flow characteristics in the object duct.

  • PDF

An Analysis of Unsteady 2-D Heat Transfer of the Thermal Stratification Flow inside Horizontal Pipe with Electrical Heat Tracing (Heat Tracing이 있는 수평배관 내부 열성층 유동의 비정상 2차원 열전달 해석)

  • 정일석;송우영
    • Journal of Energy Engineering
    • /
    • v.6 no.2
    • /
    • pp.119-128
    • /
    • 1997
  • A method to mitigate the thermal stratification flow of a horizontal pipe line is proposed by heating external bottom of the pipe with electrical heat tracing. Unsteady two dimensional model has been used to numerically investigate an effect of the external heating on the thermal stratification flow. The dimensionless governing equations are solved by using the control volume formulation and SIMPLE algorithm. Temperature distribution, streamline profile and Nusselt number distributions are analyzed under heating conditions. The numerical results of this study show that the maximum dimensionless temperature difference between hot and cold sections of the inner wall of pipe is 0.424 at dimensionless time of 1,500 and the thermal stratification phenomenon disappears at about dimensionless time of 9,000.

  • PDF

A Study on Performance of Thermoelectric Air-Cooling System in Parallel Flow (평행유동에서 공랭식 열전모듈 냉각시스템의 성능에 관한 연구)

  • Karng, Sarng-Woo;Shin, Jae-Hoon;Han, Hun-Sik;Kim, Seo-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.6
    • /
    • pp.421-429
    • /
    • 2011
  • Experimental and theoretical studies on cooling performance of two-channel thermoelectric air-cooling system in parallel flow are conducted. The effects of operating temperature to physical properties of thermoelectric module (TEM) are experimentally examined and used in the analysis of an air-cooling system considering thermal network and energy balance. The theoretical predicted temperature variation and cooling capacity are in good agreement with measured data, thereby validating analytic model. The heat absorbed rate increases with increasing the voltage input and decreasing thermal resistance of the system. The power consumption of TEM is linearly proportional to mean temperature differences due to variations of the physical properties on operation temperature of TEM. Furthermore thermal resistance of hot side has greater effects on cooling performance than that of cold side.

Study on the Characteristics of Cylinder Wake Placed in Thermally Stratified Flow(III) - Turbulent Dispersion from a Line Heat Source- (열성층유동장에 놓인 원주후류의 특성에 대한 연구 (3) -선형열원으로부터의 난류확산-)

  • 김경천;정양범
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.5
    • /
    • pp.1300-1307
    • /
    • 1995
  • The effect of thermal stratification on the turbulent dispersion from a fine cylindrical heat source was experimentally examined in a wind tunnel with and without a strong temperature gradient. A 0.5 mm dia. nichrome wire was used as a line heat source. Turbulent intensities, r.m.s. value of temperature and convective heat fluxes were measured by using a hot-wire and cold-wire combination probe. The results show that the peack value and the spread of the vertical turbulent intensity for the stratified case are far lower than those in the neutral case, which indicates that the stable temperature gradient suppresses the vertical velocity component. All of the third order moments including heat fluxes measured in the stable condition have very small values than those of the neutral case. This nature suggests that the decrease of scalar fluctuations in the stably stratified flow is mainly due to the suppression ofthe turbulent diffusion processes by the stable stratification. A simple gradient model with a composite timescale which has a simple weighted algebraic mean between dynamic and thermal time scale yields reasonably good numerical values in comparison with the experimental data.