• Title/Summary/Keyword: Cold flow

Search Result 1,094, Processing Time 0.025 seconds

Experimental Investigation for the Characteristics of Energy Separation of a Vortex Tube at Various Inlet and outlet Pressure Conditions (입.출구의 압력조건에 따른 보텍스 튜브의 에너지분리 특성에 관한 실험적 고찰)

  • 유갑종;김정수;최인수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.11
    • /
    • pp.1149-1155
    • /
    • 2001
  • The experimental investigation on energy separation in a vortex tube has been carried out to sow the effect of inlet and outlet pressures with various working fluids(air,$O_2,\;and\; CO_2$). Those outlet pressure means cold outlet and hot outlet pressure which were set equally. The results showed that the total enthalpy variation became a maximum when the mass flow rate at the cold outlet was a half of the total mass flow rate in the vortex tube (y=0.5). The total enthalpy variation was quite affected by the pressure difference between the inlet and outlet of vortex tube when the ratio of the inlet pressure to the cold outlet pressure remained constant. Although specific enthalpy differences between the inlet and the outlet (both cold and hot outlet) did not noticeably vary with the pressure difference, the specific enthalpy difference between the inlet and cold outlet was dominantly affected by physical properties of working gases.

  • PDF

Pre-strain Effect on the Bauschinger Phenomenon of Non-Heat Treatable Cold Forging Steel (냉간 비조질강의 바우싱거 효과에 미치는 변형량의 영향)

  • Ha J. G.;Kwon Y. N.;Kim S. W.;Lee Y. S.;Lee J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.326-329
    • /
    • 2005
  • Since the required strength of forged part is achieved by work hardening with the accumulation of plastic strain during the cold working, severe load can be exerted on die system. So, dies are liable to the early fracture for the non-heat treated steel forging in comparison with the conventional mild steels. Therefore, it is necessary to lower the flow stress of steels as much as possible during forging steps. Bauschinger effect can be utilized to lower flow stress during forging steps by giving the tensile prestrain on the forging billet during wire drawing step. In the present study, the prestrain effect on Bauschinger phenomenon is studied to avoid difficulties with application of non-heat treated cold forging steels in practice.

  • PDF

The Simulation about the Air Flow and Pressure Drop inside the Metal Foam (발포 금속 내 공기 유동 및 압력강하에 관한 시뮬레이션)

  • Kim, Pil-Hwan;Jin, Mei-Hua;Jang, Seok-Jun;Chung, Han-Shik;Jeong, Hyo-Min
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1053-1058
    • /
    • 2008
  • Porous medium was considered in the present study for the heat transfer enhancement. This was attributed to its high surface area to volume ratio as well as intensive flow mixing by tortuous flow passages. But when the air or water flow through in the porous medium, it is occurred the pressure drop between inlet and outlet. So in the present study investigated simulation result about the pressure drop in the porous medium before apply to heat exchanger. In this simulation, the thickness of the solid inside the porous medium region was varied 0.2 mm to 0.4 mm. And then the simulation result were compared the pressure drop in the same unit cell ($0.5\;mm{\times}0.5\;mm{\times}0.5\;mm$). To make the analysis model, it was assumed the 14-sided tetrakaidecahedron cell which has long been considered the optimal packing cell first proposed by the Lord Kelvin in 1887. And then the simulation is carried out using by STAR-CCM+ which is commercial software. The simulation result can be showed quantified pressure drop by solid effect in the porous medium.

  • PDF

Suppression of performance degradation due to cold-head orientation in GM-type pulse tube refrigerator

  • Ko, Junseok;Kim, Hyobong;Park, Seong-Je;Hong, Yong-Ju;Koh, Deuk-Yong;Yeom, Hankil
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.4
    • /
    • pp.50-53
    • /
    • 2012
  • This paper describes experimental study on GM-type pulse tube refrigerator (PTR). In a PTR, the pulse tube is only filled with working gas and there exists secondary flow due to a large temperature difference between cold-end and warm-end. The stability of secondary flow is affected by orientation of cold-head and thus, the cooling performance is deteriorated by gas mixing due to secondary flow. In this study, a single stage GM-type pulse tube refrigerator is fabricated and tested. The cooing performance of the fabricated PTR is measured as varying cold-head orientation angle and the results are used as reference data. Then, we divided interior space of pulse tube into three segments, and fixed the various size of screen mesh at interface of each segment to suppress the performance degradation due to secondary flow. For various configuration of pulse tube, no-load test and heat load test are carried out with the fixed experimental condition of charging pressure, operating frequency and orifice valve turns. From experimental results, the fine screen mesh shows the effective suppression of performance degradation for the large orientation angle, but the use of screen mesh cause the loss of cooling capacity rather than the case of no insertion into pulse tube. It should be compromised whether the use of screen mesh in consideration of the installation limitation of a GM-type pulse tube refrigerator.

A Study on the Application Method of Cold & Hot Water Manifold System for Hot Water Supply System in Residential Buildings (주거건물의 급탕방식별 급수.급탕헤더시스템 적용방안에 관한 연구)

  • Cha, Min-Chul;Je, Sung-Ho;Seok, Ho-Tae
    • Journal of the Korean housing association
    • /
    • v.19 no.1
    • /
    • pp.79-88
    • /
    • 2008
  • Hot water is used by having a wash, dishes, taking tub and drinking water in residential buildings, and the use objective is to raise comfort of human body sense, washing and sterilization effect and so on. Cold & hot water supply system is understanded simpler than HVAC systems relatively, so it is true that pace of performance improvement is slower than other systems for plan and technical development. In this study, the performance evaluations are conducted under the condition of composition ratio by 1:1 for cold & hot water supply manifold system using functionally complex valves such as constant flow regulating valve and 3-way mixing valve in the area of $105.6m^2$ apartment which consist of the largest part of the whole apartment. Also, flow rate related to simultaneous use of faucets and change of hot water temperature are compared with the existing method.

Process Design of Cold Forged Hub by Flow Control Forming Technique (유동제어 성형기술을 이용한 허브제품의 냉간단조 공정설계)

  • Park, Jong-Nam;Kim, Dong-Hwan;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.6
    • /
    • pp.86-95
    • /
    • 2002
  • This paper suggests the new technology to control metal flow in order to reduce the number of preforming and the machining for the cold forged product with complex geometry. This technology is the combined forming that consists of bulk and sheet forming with double action dies. To analyze the process, finite element simulation has been performed. The proposed technology is applied to hub model that is part of air conditioner clutch. The purpose of this study is to investigate the material now of hub through the relative-velocity control of punch and mandrel using the flow control forming technique.

Recent Topics on Injection and Combustion in High Speed Flow (Keynote)

  • Tomioka, Sadatake
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.3-8
    • /
    • 2009
  • Wall flush mounted injector with various orifice shape and injection conditions, were examined to enhance jet penetration and mixing in supersonic cross flow, in view of application to air-breathing accelerator vehicle. Orifice shapes with high aspect ratio were found to preferable for better penetration in the cold flow, and in the reacting flow for scramjet-mode combustion conditions. However, the effectiveness of the high aspect ratio was diminished in the dual-mode combustion conditions. Supersonic injection was applied to the high aspect ratio orifice, and further increase in penetration was observed in the cold and reactive flow for scramjet-mode combustion conditions, however, mixing enhancement due to mixing layer / pseudo-shock wave system interaction was dominant in the dual-mode combustion conditions. Difficulty in attaining ignition in the case with the high aspect ratio orifice was encountered during the combustion tests.

  • PDF

Study on Atomization Characteristics of Shear Coaxial Injectors (전단동축형 분사기들의 미립화 특성에 대한 연구)

  • Ahn, Jonghyeon;Lee, Keunseok;Ahn, Kyubok
    • Journal of ILASS-Korea
    • /
    • v.26 no.1
    • /
    • pp.9-17
    • /
    • 2021
  • Six shear coaxial injectors with different recess length and taper angle were manufactured. Cold-flow tests on the injectors were performed at room temperature and pressure using water and air as simulants. By changing the water mass flow rate and air mass flow rate, spray images were taken under single-injection and bi-injection. Breakup length and spray angle were analyzed from instantaneous and averaged spray images using image processing techniques. For all the injectors, the breakup length generally decreased as the momentum flux ratio increased at the same gas mass flow rate. The injectors with 7.5° taper angle usually had the longest breakup length and the smallest spray angle. When the taper angle was 15° or more, it hardly affected breakup length and spray angle. The recess length did not influence breakup length but its effect on spray angle depended on the taper angle.

An Analysis of Cold Gas Flow-Field for UHV Class Interrupters (초고압 가스차단부의 냉가스 유동해석)

  • Song, Gi-Dong;Park, Gyeong-Yeop;Song, Won-Pyo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.6
    • /
    • pp.387-394
    • /
    • 2000
  • This paper presents a method of cold gas flow-field analysis within puffer type GCB(Gas Circuit Breaker). Using this method, the entire interruption process including opening operation of GCB can be simulated successfully. In particular, the distortion problem of the grid due to the movement of moving parts can be dealt with by the fixed grid technique. The gas parameters such as temperature, pressure, density, velocity through the entire interruption process can be calculated and visualized. It was confirmed that the time variation of pressure which was calculated from the application of the method to a model GCB agreed with the experimental one. Therefore it is possible to evaluate the small current interruption capability analytically and to design the interrupter which has excellent interruption capability using the proposed method. It is expected that the proposed method can reduce the time and cost for development of GCB very much. It also will be possible to develop the hot-gas flow-field analysis program by combining the cold-gas flow field program with the arc model and to evaluate the large current interruption capability.

  • PDF

A Study of the Precise Flow Measurement using Coriolis flowmeter (코리올리 유량계를 이용한 정밀유량측정에 관한 연구)

  • Kim, In-Tae;Cho, Dae-Kee;Jeong, Min-Je;Lee, Jae-Won;Seo, Hyuk;Yu, Myoung-Jong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.61-64
    • /
    • 2008
  • For the performance evaluation of liquid mono-propellant thruster, Vacuum Hot-fire test is necessarily required. An accurate flow measurement is one of the key parameters to the successful T&E program. This paper describes the characteristics of the coriolis flowmeter, explains the cold-flow test using simulant propellant (DIW), and presents the test results. Finally, the cold test results have been verified in comparison with the hot-fire test data.

  • PDF