• Title/Summary/Keyword: Cold chamber

Search Result 278, Processing Time 0.021 seconds

Characteristic Study of Micro-Nozzles according to the Ratios of Nozzle Expansion and Specific heats in low vacuum condition (저진공상태에서 노즐 팽창비와 비열비에 따른 마이크로 노즐의 특성 연구)

  • Kim, Youn-Ho;Jung, Sung-Chul;Huh, Hwan-Il
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.249-252
    • /
    • 2006
  • We conducted the experiment to analyze characteristics of micro-nozzle using different cold gas under two different nozzle expansion ratios in low vacuum condition. We measured thrust and chamber pressure and mass flow rate under low vacuum condition, and then compared them with those in ambient pressure.

  • PDF

A Study for Fast Light-Off of a Catalyst During Cold Start (냉시동시 촉매의 예열시간 단축에 관한 연구)

  • Cho, Y.S.;Lee, Y.S.
    • 한국연소학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.69-77
    • /
    • 1998
  • In order to meet the stringent emission regulations, fast light-off of a catalyst is essential to reduce the HC and CO emissions during cold start. Cranking Exhaust Gas Ignition (CEGI) method developed in this study showed that the catalyst reaches the light-off temperature in a few seconds after cold start. The CEGI system cuts off the ignition signal for a few seconds during the cranking period. so the unburned fuel-air mixture bypasses the combustion chamber and flows through the exhaust manifold. When the unburned mixture reaches two glow plugs installed upstream of the catalyst, it burns and releases the thermal energy to heat up the catalyst. Results from the FTP-75 tests showed that the exhaust emissions with the CEGI reduced by 47.7% for THC and by 88.6% for CO in the cold-transient phase of the test.

  • PDF

Design and Performance Tests of a Cryogenic Blower for a Thermal Vacuum Chamber (열진공 챔버용 극저온 블로워 설계 및 성능평가)

  • Seo, Heejun;Cho, Hyokjin;Park, Sungwook;Moon, Gueewon;Huh, Hwanil
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.11
    • /
    • pp.1008-1015
    • /
    • 2015
  • Thermal vacuum test should be performed prior to launch to verify satellites' functionality in extremely cold/hot temperatures and vacuum conditions. A thermal vacuum chamber used to perform the thermal vacuum tests of a satellite system and its components. A cryogenic blower is a core component of the gaseous nitrogen (GN2) closed loop thermal control system for thermal vacuum chambers. A final goal of this research is development of cryogenic blower. Design requirements of a blower are 150 CFM flow rate, 0.5 bara pressure difference, hot and cold temperatures. This paper describes the performance analysis of impeller by 1D, CFD commercial software, the design of the thermal protection interface between the driving part and the fluid part. The performance of the cryogenic blower is confirmed by test at the standard air condition and is verified by on the thermal vacuum chamber at the real operating condition.

A study on ice-slurry production by water spray (수분무에 의한 아이스 슬러리 생성에 관한 연구)

  • Kim, B.S.;Lee, Y.P.;Yoon, S.Y.;Lee, J.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.2
    • /
    • pp.134-143
    • /
    • 1997
  • A theoretical and experimental study has been performed to investigate the characteristics of ice-slurry product. By diffusion-controlled model, the possibility of ice slurry has been theoretically anticipated. The water vapor evaporated from the surface of droplets is extracted continuously from the chamber by a vacuum pump. The droplet diameter was measured by silion immersed method. The ice slurry has been obtained by spraying droplets of ethylene-glycol aqueous solution in the chamber where pressure is maintained under the triple point of water. The droplet of which the diameter is $300{\mu}m$, and the initial temperature is $20^{\circ}C$, was changed into ice particle within the chamber of which the height is 1.33m.

  • PDF

A Study on Ice Slurry Production by Water Spray

  • Kim, Byeong-Sun;Lee, Yoon-Pyo;Yoon, Seong-Young;Lee, Jin-Ho
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.6
    • /
    • pp.45-55
    • /
    • 1998
  • A theoretical and experimental study is performed to investigate the characteristics of ice slurry product. By diffusion-controlled evaporation model the possibility of ice slurry is theoretically anticipated. The water vapor evaporated from the surface of droplets is extracted continuously from the chamber by a vacuum pump. The droplet diameter is measured by silicon immersion method. The ice slurry is obtained by spraying droplets of ethylene glycol aqueous solution in the chamber where pressure is maintained under the triple point of water. The droplet with the diameter of 300 $\mu\textrm{m}$and the initial temperature of 2$0^{\circ}C$ was changed into ice particle within the chamber of 1.33m in height.

  • PDF

Experimental Study of the Role of Gas-Liquid Scheme Injector as an Acoustic Resonator in a Combustion Chamber

  • Kim Hak-Soon;Sohn Chae-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.896-904
    • /
    • 2006
  • In a liquid rocket engine, the role of gas-liquid scheme injector as an acoustic resonator or absorber is studied experimentally for combustion stability by adopting linear acoustic test. The acoustic-pressure signals or responses from the chamber are monitored by acoustic amplitude. Acoustic behavior in a rocket combustor with a single injector is investigated and the acoustic-damping effect of the injector is evaluated for cold condition by the quantitative parameter of damping factor as a function of injector length. From the experimental data, it is found that the injector can play a significant role in acoustic damping when it is tuned finely. The optimum tuning-length of the injector to maximize the damping capacity is near half of a full wavelength of the first longitudinal overtone mode traveling in the injector with the acoustic frequency intended for damping in the chamber. When the injector has large diameter, the phenomenon of the mode split is observed near the optimum injector length and thereby, the acoustic-damping effect of the tuned injectors can be degraded.

A Study on Combustion Characteristics of Methanol Blended Fuel in Constant Volume Combustion Chamber (메탄을 혼합연료를 이용한 정적연소실내에서의 연소 특성에 관한 연구)

  • Cho Haeng Muk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.2
    • /
    • pp.154-160
    • /
    • 2005
  • The result of combustion experiment by using the methanol-gasoline blended fuel showed that the supplying pressure appeared the maximum pressure between equivalent rate 1.1 and 1.2. and the evaporation of the fuel has been known to have been greatly influenced by surrounding temperature and the combustion chamber temperature after being injected from the injector And it is confirmed that the rate of evaporation had been suddenly dropped according to the temperature in the combustion chamber though the injected foe) had been fully evaporated Such tendency has visibly appeared when the zone is leaner. and we recognize that the rich fuel supply is needed in the operation of cold operating.

Dynamic Modeling of the Free Piston Stirling Pump for the Passive Safety Injection of the Next Generation Nuclear Power Plant (차세대 신형원자로의 피동형 안전 주입장치를 위한 프리피스톤 스터링 펌프의 동특성 모델)

  • Lee, Jae-Young
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1999.11a
    • /
    • pp.149-154
    • /
    • 1999
  • This paper describes a passive safety injection system with free piston Stirling pump working withabundant decay heat in the nuclear reactor during the hypothetical accident. The water column in the tube assembly connected from the hot chamber to the cold chamber in the pump oscillates periodically due to thermal volume changes of non-condensable gas in each chamber. The oscillating pressure in the water column is converted into the pumping power with a suction-and-bleed type valve assembly. In this paper a dynamic model describing the frequency of oscillation and pumping pressure is developed. It was found that the pumping pressure is a function of the temperature difference between the chambers. Also, the frequency oscillation depends on the length of the tube with water column.

  • PDF

IDLE PERFORMANCE OF AN SI ENGINE WITH VARIATIONS IN ENGINE CONTROL PARAMETERS

  • Kim, D.S.;Cho, Y.S.
    • International Journal of Automotive Technology
    • /
    • v.7 no.7
    • /
    • pp.763-768
    • /
    • 2006
  • Emission reduction in the cold start period of SI engines is crucial to meet stringent emission regulations such as SULEV Emissoin reduction is the starting point of the study in the which the variable valve timing (VVT) technology may be one promising method to minimize cold start emissions while maintaining engine performance. This is because it is possible to change valve overlap and residual gas fraction during cold start and idle operations. Our previous study showed that spark timing is another important factor for reducing cold-start emissions since it affects warm-up time of close-coupled catalysts (CCC) by changing exhaust gas temperature. However, even though these factors may be favorable for reduction of emissions, they may deteriorate combustion stability in these operating conditions. This means that the two variables should be optimized for best exhaust emissions and engine stability. This study investigated the effects of valve and spark timings in idle performance such as combustion stability and exhaust emissions. Experiments showed that valve timings significantly affected engine stability and exhaust emissions, especially CO and $NO_x$, due to change in residual gas fraction within the combustion chamber. Spark timing also affects HC emissions and exhaust gas temperature. Yet it has no significant effects on combustion stability. A control strategy of proper valve timing and spark timing is suggested in order to achieve a reduction in exhaust emissions and a stable operation of the engine in a cold start and idle operation.

Measurement of the Shape of the Cold Neutron Source Vertical Hole by Ultrasonic Wave Sensor (초음파센서를 이용한 냉중성자원 수직공 형상측정)

  • Park, Guk-Nam;Choe, Chang-Ung;Sim, Cheol-Mu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2167-2173
    • /
    • 2000
  • The HANARO (High-flux Advanced Neutron Application Reactor) has operated since 1995. The Cold Neutron(CN) hole was implanted in the reflector tank from the design stage. Before a vacuum chamber and a moderator cell for the cold neutron source are installed into the CN hole, it is necessary to measure the exact size of the inside diameter and thickness of the CN hole to prevent the interference problem. Due to inaccessibility and high radiation field in the CN hole, a mechanical measurement method is not permitted. The immersion ultrasonic technique is considered as the best method to measure the thickness and the diameter. The 4 axis manipulator of the 2 channel of a sensor module was fabricated. The transducer of 10 MHz results in 0.03 nun of resolution. The inside diameter and thickness for 550 points of the CN hole were measured using 2 channel ultrasonic sensors. The results showed that the thickness is in the range of 13-6.7 mm and inside diameter is in the range of o 156-165. These data will be a good reference in the design of a cold neutron source facility.