• Title/Summary/Keyword: Cold air drainage

Search Result 28, Processing Time 0.029 seconds

Observation of the Cold-air Drainage and Thermal Belt Formation in a Small Mountainous Watershed by Using an Infrared Imaging Radiometer (적외선 영상 복사계를 이용한 산간집수역의 찬공기 배수와 온난대 형성 관측)

  • Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.13 no.2
    • /
    • pp.79-86
    • /
    • 2011
  • Cold-air drainage and pooling occur in most mountain valleys at night. Local climates with cold-air pooling could affect phenology and distribution of crop plants. A high resolution infrared imaging radiometer was used to visualize the cold-air drainage and thermal belt formation over a small mountainous watershed (ca. $10{\times}5{\times}1$ km for the maximum length${\times}$width${\times}$depth). Thermal images on $640{\times}480$ pixels were scanned across the Akyang valley (south of Mt. Jiri National Park) by the radiometer installed at a local peak ('Hyongjebong', 1,117 m a.s.l.) at dawn of 17 May 2011, when the synoptic condition was favorable for the surface cooling and cold-air drainage. Major findings are: (1) Cold-air drainage and accumulation was clearly identified by the lowest brightness temperature mainly at the valley bottom. (2) So-called 'thermal belt' with higher brightness temperature was found partway up the valley sidewalls and showed up to $5^{\circ}C$ departure from the valley bottom temperature. (3) Digital thermography showed feasibility for validation of the high definition geospatial temperature models currently in use for the plot-specific agrometeorological service.

Minimum Temperature Mapping in Complex Terrain Considering Cold Air Drainage (냉기침강효과를 고려한 복잡지형의 최저기온 분포 추정)

  • 정유란;서형호;황규홍;황범석;윤진일
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.4 no.3
    • /
    • pp.133-140
    • /
    • 2002
  • Site-specific minimum temperature forecasts are critical in a short-term decision making procedure for preventive measures as well as a long-term strategy such as site selection in fruits industry. Nocturnal cold air pools frequently termed in mountainous areas under anticyclonic systems are very dangerous to the flowering buds in spring over Korea, but the spatial resolution to detect them exceeds the current weather forecast scale. To supplement the insufficient spatial resolution of official forecasts, we developed a GIS - assisted frost risk assesment scheme for using in mountainous areas. Daily minimum temperature data were obtained from 6 sites located in a 2.1 by 2.1 km area with complex topography near the southern edge of Sobaek mountains during radiative cooling nights in spring 2001. A digital elevation model with a 10 m spatial resolution was prepared for the entire study area and the cold air inflow was simulated for each grid cell by counting the number of surrounding cells coming into the processing cell. Primitive temperature surfaces were prepared for the corresponding dates by interpolating the Korea Meteorological Administration's automated observational data with the lapse rate correction. The cell temperature values corresponding to the 6 observation sites were extracted from the primitive temperature surface, and subtracted from the observed values to obtain the estimation error. The errors were regressed to the flow accumulation at the corresponding cells, delineating a statistically significant relationship. When we applied this relationship to the primitive temperature surfaces of frost nights during April 2002, there was a good agreement with the observations, showing a feasibility of site-specific frost warning system development in mountainous areas.

Long-term performance of drainage system for leakage treatment of tunnel operating in cold region (한랭지역에서 운영 중인 터널의 누수처리를 위한 유도배수시스템의 장기 성능 평가)

  • Kim, Dong-Gyou
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.1177-1192
    • /
    • 2018
  • The objective of this study is to develop the existing drainage system for catching the partial leakage of tunnel structures operating in cold region. The drainage system consists of drainage board, Hotty-gel as a waterproofing material, cover for preventing protrusion of Hotty-gel, air nailer, fixed nail, pipe for collecting ground leak, pipe for conveying ground leak, wire-mesh, and sprayed cement mortar. The drainage systems were installed in conventional concrete lining tunnels to evaluate the site applicability and constructability. The performances of waterproof and the drainage in the drainage system were evaluated by injecting 1,000 ml of red water in the back of the drainage system at 7 days, 14 days, 21 days, 28 days, 2 months, 3 months, 4 months, 5 months, 6 months, 7 months and 8 months. During 8 months of field test, the average daily temperature of the tunnel site was measured from $-16.0^{\circ}C$ to $25.6^{\circ}C$. The daily minimum temperature was $-21.3^{\circ}C$ and the daily maximum temperature was $30.8^{\circ}C$. There was no problem in waterproof and drainage performance of the drainage board in the drainage system. However, the pipe for conveying ground leak had the leakage problem from 14 days. It is considered that the leakage of the pipe for conveying ground leak was caused by the deformation of the pipe of the flexible plastic material having a thickness of 0.2 cm by using the high pressure air nailer and the fixing pin and the insufficient thickness and width of the hotty-gel for preventing the leakage.

Site - Specific Frost Warning Based on Topoclimatic Estimation of Daily Minimum Temperature (지형기후모형에 근거한 서리경보시스템 구축)

  • Chung Uran;Seo Hee Cheol;Yun Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.6 no.3
    • /
    • pp.164-169
    • /
    • 2004
  • A spatial interpolation scheme incorporating local geographic potential for cold air accumulation (TOPSIM) was used to test the feasibility of operational frost warning in Chatancheon basin in Yeoncheon County, where the introduction of new crops including temperate zone fruits is planned. Air temperature from April to June 2003 was measured at one-minute intervals at four locations within the basin. Cold-air accumulation potentials (CAP) at 4 sites were calculated for 3 different catchment scales: a rectangular area of 65 x 55 km which covers the whole county, the KOWACO (Korea Water Corporation) hydrologic unit which includes all 4 sites, and the sub-basins delineated by a stream network analysis of the digital elevation model. Daily minimum temperatures at 4 sites were calculated by interpolating the perfect prognosis (i.e., synoptic observations at KMA Dongducheon station) based on TOPSIM with 3 different CAPs. Mean error, mean absolute error, and root mean square error were calculated for 45 days with no precipitation to test the model performance. For the 3 flat locations, little difference was detected in model performance among 3 catchment areas, but the best performance was found with the CAPs calculated for sub-basins at one site (Oksan) on complex terrain. When TOPSIM loaded with sub-basin CAPs was applied to Oksan to predict frost events during the fruit flowering period in 2004, the goodness of fit was sufficient for making an operational frost warning system for mountainous areas.

Visualization of Local Climates Based on Geospatial Climatology (공간기후모형을 이용한 농업기상정보 생산)

  • Yun Jin Il
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.6 no.4
    • /
    • pp.272-289
    • /
    • 2004
  • The spatial resolution of local weather and climate information for agronomic practices exceeds the current weather service scale. To supplement the insufficient spatial resolution of official forecasts and observations, gridded climate data are frequently generated. Most ecological models can be run using gridded climate data to produce ecosystem responses at landscape scales. In this lecture, state of the art techniques derived from geospatial climatology, which can generate gridded climate data by spatially interpolating point observations at synoptic weather stations, will be introduced. Removal of the urban effects embedded in the interpolated surfaces of daily minimum temperature, incorporation of local geographic potential for cold air accumulation into the minimum temperature interpolation scheme, and solar irradiance correction for daytime hourly temperature estimation are presented. Some experiences obtained from their application to real landscapes will be described.

A Quantification Method for the Cold Pool Effect on Nocturnal Temperature in a Closed Catchment (폐쇄집수역의 냉기호 모의를 통한 일 최저기온 분포 추정)

  • Kim, Soo-Ock;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.13 no.4
    • /
    • pp.176-184
    • /
    • 2011
  • Cold air on sloping surfaces flows down to the valley bottom in mountainous terrain at calm and clear nights. Based on the assumption that the cold air flow may be the same as the water flow, current models estimate temperature drop by regarding the cold air accumulation at a given location as the water-like free drainage. At a closed catchment whose outlet is blocked by man-made obstacles such as banks and roads, however, the water-like free drainage assumption is no longer valid because the cold air accumulates from the bottom first. We developed an empirical model to estimate quantitatively the effect of cold pool on nocturnal temperature in a closed catchment. In our model, a closed catchment is treated like a "vessel", and a digital elevation model (DEM) was used to calculate the maximum capacity of the cold pool formed in a closed catchment. We introduce a topographical variable named "shape factor", which is the ratio of the cold air accumulation potential across the whole catchment area to the maximum capacity of the cold pool to describe the relative size of temperature drop at a wider range of catchment shapes. The shape factor is then used to simulate the density profile of cold pool formed in a given catchment based on a hypsometric equation. The cold lake module was incorporated with the existing model (i.e., Chung et al., 2006), generating a new model and predicting distribution of minimum temperature over closed catchments. We applied this model to Akyang valley (i.e., a typical closed catchment of 53 $km^2$ area) in the southern skirt of Mt. Jiri National Park where 12 automated weather stations (AWS) are operational. The performance of the model was evaluated based on the feasibility of delineating the temperature pattern accurately at cold pool forming at night. Overall, the model's ability of simulating the spatial pattern of lower temperature were improved especially at the valley bottom, showing a similar pattern of the estimated temperature with that of thermal images obtained across the valley at dawn (0520 to 0600 local standard time) of 17 May 2011. Error in temperature estimation, calculated with the root mean square error using the 10 low-lying AWSs, was substantially decreased from $1.30^{\circ}C$ with the existing model to $0.71^{\circ}C$ with the new model. These results suggest the feasibility of the new method in predicting the site-specific freeze and frost warning at a closed catchment.

Analysis of the Relationship of Cold Air Damming with Snowfall in the Yeongdong Region (영동 지역 한기 축적과 강설의 연관성 분석)

  • Kim, Mi-Gyeong;Kim, Byung-Gon;Eun, Seung-Hee;Chae, Yu-Jin;Jeong, Ji-Hoon;Choi, Young-Gil;Park, Gyun-Myeong
    • Atmosphere
    • /
    • v.31 no.4
    • /
    • pp.421-431
    • /
    • 2021
  • The Yeongdong region is frequently vulnerable to heavy snowfall in winter in terms of societal and economical damages. By virtue of a lot of previous efforts, snowfall forecast has been significantly improved, but the performance of light snowfall forecast is still poor since it is very conducive to synoptic and mesoscale interactions, largely attributable to Taeback mountains and East Sea effects. An intensive observation has been made in cooperation with Gangwon Regional Meteorological Office and National Institute of Meteorological Studies in winter seasons since 2019. Two distinctive Cold Air Damming (CAD) events (14 February 2019 and 6 February 2020) were observed for two years when the snowfall forecast was wrong specifically in its location and timing. For two CAD events, lower-level temperature below 2 km ranged to lowest limit in comparisons to those of the previous 6-years (2014~2019) rawinsonde soundings, along with the stronger inversion strength (> 2.0℃) and thicker inversion depth (> 700 m). Further, the northwesterly was predominant within the CAD layer, whereas the weak easterly wind was exhibited above the CAD layer. For the CAD events, strong cold air accumulation along the east side of Taeback Mountains appeared to prevent snow cloud and convergence zone from penetrating into the Yeongdong region. We need to investigate the influence of CAD on snowfall in the Yeongdong region using continuous intensive observation and modeling studies altogether. In addition, the effect of synoptic and mesoscale interactions on snowfall, such as nighttime drainage wind and land breeze, should be also examined.

An Optimum Scale for Topoclimatic Interpolation of Daily Minimum Temperature in Complex Terrain (일 최저기온 공간내삽을 위한 지형기후학적 최적 공간규모)

  • 정유란;서희철;윤진일;이광회
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.5 no.4
    • /
    • pp.261-265
    • /
    • 2003
  • Cold air accumulation plays a critical role in formulating daily minimum temperature in complex terrain on radiative cooling nights, and spatial interpolation can be improved by accommodating this important topoclimatic variable. Little is known about the spatial scale for computing cold air accumulation which influences daily minimum temperature. Air temperature was measured at 10-minute intervals during September 2002- February 2003 at eight locations within a 1 by 1 km hilly orchard area. Minimum temperature data for suspected radiative cooling nights were collected, and the deviations from reference observations at a near-by KMA automated weather station were calculated. A digital elevation model with a 10m cell size was used to calculate the cold air accumulation at 8 locations. Zonal averages of the cold air accumulation were computed for each location by increasing the cell radius from 1 to 10. Temperature deviations were regressed to a common logarithm of the smoothed averages of cold air accumulation to derive a linear relationship between the local temperature deviation and the site topography. The highest coefficient of determination ($r^2$ = 0.78) was found at a cell radius of 5, which corresponds to an approximately 1 ha boundary surrounding the point of interest.

Atmospheric Characteristics of Fog Incidents at the Nakdong River : Case Study in Gangjeong-Goryeong Weir (낙동강 유역 안개 발생시 기상 특성: 강정고령보 사례를 중심으로)

  • Park, Jun Sang;Lim, Yun-Kyu;Kim, Kyu Rang;Cho, Changbum;Jang, Jun Yeong;Kang, Misun;Kim, Baek-Jo
    • Journal of Environmental Science International
    • /
    • v.24 no.5
    • /
    • pp.657-670
    • /
    • 2015
  • Visibility and Automatic Weather System(AWS) data near Nakdong river were analyzed to characterize fog formation during 2012-2013. The temperature was lower than its nearby city - Daegu, whereas the humidity was higher than the city. 157 fog events were observed in total during the 2 year period. About 65% of the events occurred in fall (September, October, and November) followed by winter, summer, and spring. 94 early morning fog events of longer than 30 minutes occurred when south westerly wind speed was lower than 2 m/s. During these events, the water temperature was highest followed by soil surface and air temperatures due to the advection of cold and humid air from nearby hill. The observed fog events were categorized using a fog-type classification algorithm, which used surface cooling, wind speed threshold, rate of change of air temperature and dew point temperature. As a result, frontal fog observed 6 times, radiation 4, advection 13, and evaporation 66. The evaporation fog in the study area lasted longer than other reports. It is due to the interactions of cold air drainage flow and warm surface in addition to the evaporation from the water surface. In particular, more than 60% of the evaporation fog events were accompanied with cold air flows over the wet and warm surface. Therefore, it is needed for the identification of the inland fog mechanism to evaluate the impacts of nearby topography and land cover as well as water body.

Micro-meteorological Characteristics during the Steam Fog over the Gumi Reservoir of Nakdong River (낙동강 구미 보의 증기 안개 발생 시의 미기상학적 특성)

  • Kim, Hae-Dong;Cho, Chang-Bum;Seo, Kwang-Su
    • Journal of Environmental Science International
    • /
    • v.25 no.3
    • /
    • pp.405-415
    • /
    • 2016
  • We analyzed the micro-meteorological characteristics during typical steam fog over the Gumi Reservoir of Nakdong river with the field observation data for recent 2 year(1 April 2013~31 March 2015) collected by the national institute of meteorological research, KMA. Steam fog occur when the cold drainage flows over the warm water surface. As the sensible and latent heat from water are provided to the air, the instability of lower atmosphere is increased. The resultant vertical mixing of warm, moist air near water surface and cold air aloft causes the formation of status cloud. The convection strengthened by radiative cooling of the upper part of the stratus causes the fog to propagate downward. Also, the temperature at the lowest atmosphere is increased rapidly and the inversion near surface disappear by these processes when the fog forms. The increase of wind speed is observed because the downward transportation of momentum is caused by vertical mixing.