• Title/Summary/Keyword: Cold Rolling Simulation

Search Result 47, Processing Time 0.019 seconds

Simulation of Fuzzy Shape Control for Cold-Rolled Strip with Randomly Irregular Strip Shape (임의 불량형상을 갖는 냉연판의 퍼지형상제어 시뮬레이션)

  • Jung, Jong-Yeob;Im, Yong-Taek
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.3
    • /
    • pp.861-871
    • /
    • 1996
  • In this study, a fuzzy control algorithm was developed for the randomly irregular shape of cold-rolled strip. Currently developed fuzzy control algorithm consists of two parts: the first part calculates the changes of work and intermediate roll bender forces based on the symmetric part of the irregular strip shape, and the second part calculates the weighting factors based on the asymmetric part and modifies the pre-determined roll bender forces according to the weighting factors. As a result of this, bender froces applied at the both sides of the cold-rolled strip were different. In order to simulate the continuous shape control. fuzzy controller developed was linked with emulator which was developed based on neural network. The fuzzy controller and emulator developed simulated the cold rolling process until irregular shape converged to a tolerable range in producing uniform cross-sectional strip shape. The results obtained from the simulation were reasonable for various irregular strip shapes.

Analysis and Experiments on the Thread Rolling Process for Micro-Sized Screws Part I: Process Parameter Analysis by Finite-Element Simulation (마이크로 체결부품 전조성형공정에 관한 해석 및 실험적 고찰(Part I: 유한요소 해석기반 공정변수 영향분석))

  • Song, J.H.;Lee, J.;Lee, H.J.;Lee, G.A.;Park, K.D.;Ra, S.W.;Lee, H.W.
    • Transactions of Materials Processing
    • /
    • v.20 no.8
    • /
    • pp.581-587
    • /
    • 2011
  • The production of high-precision micro-sized screws, used to fasten parts of micro devices, generally utilizes a cold thread-rolling process and two flat dies to create the teeth. The process is fairly complex, involving parameters such as die shape, die alignment, and other process variables. Thus, up-front finite-element(FE) simulation is often used in the system design procedure. The final goal of this paper is to produce high-precision screw with a diameter of $800{\mu}m$ and a thread pitch of $200{\mu}m$ (M0.8${\times}$P0.2) by a cold thread rolling process. Part I is a first-stage effort, in which FE simulation is used to establish process parameters for thread rolling to produce micro-sized screws with M1.4${\times}$P0.3, which is larger than the ultimate target screw. The material hardening model was first determined through mechanical testing. Numerical simulations were then performed to find the effects of such process parameters as friction between work piece and dies, alignment between dies and material. The final shape and dimensions predicted by simulation were compared with experimental observation.

Evolution of Strain States and Textures During Rolling with Various Conditions (압연조건에 따른 변형률 상태의 변화와 집합조직의 형성)

  • Kang, H.G;Huh, M.Y
    • Transactions of Materials Processing
    • /
    • v.15 no.7 s.88
    • /
    • pp.479-484
    • /
    • 2006
  • The evolution of strain states and textures during rolling with various conditions was investigated by finite element method (FEM) simulations and measurements of rolling textures. Symmetrical rolling with a high friction gives rise to a strong variation of shear strains in rolled sample leading to the formation of texture gradients throughout the thickness layers. A small variation of shear strains during rolling with a well lubrication condition leads to the formation of a fairly homogeneous rolling texture throughout the sheet thickness. During asymmetrical rolling, a proper control of rolling parameters provides the evolution of a fairly homogeneous shear texture throughout the whole sheet thickness.

Multivariable Control of Cold-Rolling Mills with Roll Eccentricity (롤편심을 포함한 냉간압연 시스템의 다변수 제어)

  • Kim, Jong-Sik;Kim, Seung-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.3
    • /
    • pp.502-510
    • /
    • 1997
  • A disturbance rejection controller using eccentricity filtering and LQ control techniques is proposed to alleviate the effecto of major roll eccentricity in multivariable cold-rolling processes. Fundamental problems in multivariable cold-rolling processes such as process time delay inherent in exit thickness measurement and non-stationary characteristics of roll eccentricity signals can be overcome by the proposed control method. The filtered instantaneous estimate of roll eccentricity may be exploited to improve instantaneous estimate of the exit thickness variation based on roll force and roll gap measurements, and a feedforward compensator is augmented as a reference for a gaugemeter thickness estimator. LQ feedback controller is combined with eccentricity filter for the attenuation of the exit thickness variation due to the entry thickness variation. The simulation results show that the roll eccentricity disturbance is significantly eliminated and other disturbances also are attenuated.

Noninteracting and Loop-Shaping LQ Controller Design for Tandem Cold Mills (연속 냉간압연 시스템을 위한 비간섭 루프형성 LQ제어기 설계)

  • 김종식;김철민
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2629-2639
    • /
    • 1994
  • A robust multivariable controller is synthesized for tandem cold mills. A blocked-noninteracting control method is applied for simplifying the structure of rolling control systems. And, a loop-shaping LQ control method is applied for maintaining the variation of the thickness and tension of each rolling stand as small as possible. In this paper, the effects of the design parameter on loop-shaping and the number of control inputs are evaluated. The simulation results show that the thickness and tension control accuracy of tandem cold mills can be improved by the blocked-noninteracting and compensated loop-shaping LQ controller.

Numerical Analysis and Experimental Study of Thread Rolling Process for Micro-sized Screws(Part II: Application to a Micro-screw with Diameter of 800㎛) (마이크로 체결부품 전조성형공정에 관한 해석 및 실험적 고찰(Part II: M0.8급 마이크로 스크류 전조공정 적용))

  • Song, J.H.;Lee, J.;Lee, H.J.;Lee, G.A.;Park, K.D.;Ra, S.W.;Lee, H.W.
    • Transactions of Materials Processing
    • /
    • v.21 no.3
    • /
    • pp.179-185
    • /
    • 2012
  • In this paper, it is proposed to produce high precision screws with a diameter of $800{\mu}m$ and a thread pitch of $200{\mu}m$ ($M0.8{\times}P0.2$) by means of a cold thread rolling process. In this part II of the study, the focus is on the production and reliability testing of the prototype $M0.8{\times}P0.2$ micro-screw. Designs for two flat dies were developed with the aid of the literature and previous studies. Process parameters during the cold thread rolling process were established through FE simulations. The simulation results showed that the threads of the micro-screw are completely formed through the rolling process. Prototype $M0.8{\times}P0.2$ micro-screw were fabricated with a high precision thread rolling machine. In order to verify the simulation results, the deformed shape and dimensions obtained from the experiment were compared with those from the simulations. Hardness and failure torque of the fabricated micro-screw were also measured. The values obtained indicate that the CAE based process design used in this paper is very appropriate for the thread rolling of micro-sized screws.

Prediction of Three-Dimensional Strip Profile for 6-High Mill in Thin-Strip Rolling (6 단 압연기의 극박 압연공정에서 3 차원 판 형상 예측)

  • Lee, Sang-Ho;Song, Gil-Ho;Lee, Sung-Jin;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.8
    • /
    • pp.855-861
    • /
    • 2011
  • We predict the rolled-strip profile for a 6-high mill using thin rolling theory and a numerical model. In the numerical model, we calculate the distributions of the contact pressures between the rolls and the rolling pressure between the strip and the work roll in the transverse direction using the geometric structure of the 6-high mill and the boundary conditions. We determine the distribution of the rolling pressure in the rolling direction via a thin-foil rolling model using Fleck's theory. We calculate the three-dimensional elastic deformation of the work roll using the pressures of the width and rolling directions. We then obtain the three-dimensional strip profile via the elastic deformation of the work roll during the rolling process. The profile is verified by a thin cold-rolling test and FE simulation.

Thickness Control of Cold-Rolling Mills with Roll Eccentricity (롤편심을 포함한 냉간 압연시스템의 두께제어)

  • 김승수;김종식;황이철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.248-254
    • /
    • 1996
  • A disturbance rejection controller using eccentricity filtering and LQ control techniques is proposed to alleviate significantly the effect of roll eccentricity in multivariable cold-rolling processes. Fundamental problems such as process time delay inherent in exit thickness measurement and non-stationary characteristics of roll eccentricity signals can be overcome by the proposed control method. The filtered instantaneous estimate of roll eccentricity may be exploited to improve instantaneous estimate of the exit thickness variation based on roll force and roll gap mearsurements, and a feedforward compensator is augmented as a reference for a gaugemeter thickness estimator. And, LQ feedback controller is combined with eccentricity filter for the attenuation of the exit thickness variation due to the entry thickness variation. The simulation results show that eccentricity components have been significantly eliminated and simultaneously other distrubances also have been attenuated.

  • PDF

Residual Stress Analysis of Cold Rolled Sheet in Shadow Mask (Shadow Mask용 냉간 압연박판의 잔류응력 해석)

  • 정호승;조종래;문영훈;김교성
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.195-198
    • /
    • 2002
  • Residual stress of sheet occurs during cold rolling and it is hard to avoid and inevitable. The residual stress in the sheet cause etching curls when it suffers peroration process. The residual stress through the thickness direction in the sheet is a function of a friction coefficient, total reduction, mil size and initial sheet thickness. To estimate the residual stress and deformation due to etching curl, FEM analysis is performed. A numerical analysis is used a ANSYS 5.6 and an elastic-plastic constitutive equations. rho simulation results indicate a distribution of residual stress.

  • PDF

Simulation for preparing operation in stainless cold rolling mill (스테인레스 냉연공장 가동대비조업 simulation분석)

  • 김영일
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1991.10a
    • /
    • pp.205-217
    • /
    • 1991
  • 본 연구의 목적은 포항제철소 스테인레스 냉연공장 가동계획에 의거 stainless소둔산세공장 H-CPL에서 냉연공장 정정 line까지의 material flow 및 설비운영상 제약상항을 simulation하므로서 생산성 향상에 필요한 조업대비 기준 및 문제점을 도출하여 정상조업도 조기 달성에 기여하고자 한다.

  • PDF