• Title/Summary/Keyword: Cold Energy

Search Result 1,230, Processing Time 0.03 seconds

Enhancement of the round-trip efficiency of liquid air energy storage (LAES) system using cascade cold storage units

  • Kim, Jhongkwon;Byeon, Byeongchang;Kim, Kyoung Joong;Jeong, Sangkwon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.4
    • /
    • pp.45-50
    • /
    • 2020
  • In this research, the variation of round-trip efficiency in a liquid air energy storage system (LAES) is calculated and an optimal configuration is found. The multiple stages of cold energy storage are simulated with several materials that process latent heat at different temperature ranges. The effectiveness in the charging and discharging processes of LAES is newly defined, and its relationship with the round-trip efficiency is examined. According to defined correlation, the effectiveness of the discharging process significantly affects the overall system performance. The round-trip efficiency is calculated for the combined cold energy storage materials of aqueous dimethyl sulfoxide (DMSO) solution, ethanol, and pentane theoretically. The performance of LAES varies depending on the freezing point of the cold storage materials. In particular, when the LAES uses several cold storage materials, those materials whose freezing points are close to room temperature and liquid air temperature should be included in the cold storage materials. In this paper, it is assumed that only latent heat is used for cold energy storage, but for more realistic analyzes, the additional consideration of the transient thermal situation to utilize sensible heat is required. In the case of such a dynamic system, since there is certainly more increased heat capacity of the entire storage system, the volume of the cold energy storage system will be greatly reduced.

Performance Improvement of Precooling Process and Cold Box in Hydrogen Liquefaction Process Using LNG Cold Energy (LNG 냉열이용 액체수소 제조공정의 예냉 및 Cold box의 성능 개선 연구)

  • Yun, Sang-Kook;Yoon, Na-Eun
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.4
    • /
    • pp.56-61
    • /
    • 2020
  • For the hydrogen liquefaction, the large amount of energy is consumed, due to precooling, liquefaction and o-p conversion processes. The aim of this work is to improve the performance of hydrogen liquefaction process by introducing the new energy saving processes, that are the liquid nitrogen precooling process by using LNG cold energy, and the new design of cold box insulation using cold air circulation. The results show that the indirect use of LNG cold energy in precooling process enables not only to get energy saving, but to make safer operation of liquefaction plant. In new cold box, the energy loss of equipments could be reduced by nearly 35%~50% compared to the present perlite insulation, if insulation structure is organised as 3mm steel wall/20cm PUF/5cm air/20cm PUF/equipment. Additionally the equipments installed in cold box can get cooling effect, if the temperature is higher than the temperature of cold air. The application of this results can gives to increase the liquid yield of about 50% substantially in industrial hydrogen liquefaction plant.

Process Analysis and Simulation for System of Air Liquefaction Separation Using LNG Cold Energy (LNG 냉열을 이용한 공기액화분리시스템의 시뮬레이션 및 공정 해석)

  • HAN, DANBEE;BAEK, YOUNGSOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.3
    • /
    • pp.276-281
    • /
    • 2019
  • The process of separating oxygen and nitrogen from the air is mainly performed by electric liquefaction, which consumes a lot of electricity, resulting in higher operating costs. On the other hand, when used for cold energy of LNG, electric power can be reduced compared to the electric Linde cycle. Currently, LNG cold energy is used in the cold refrigeration warehouse, separation of air-liquefaction, and LNG cold energy generation in Japan. In this study, the system using LNG cold energy and the Linde cycle process system were simulated by PRO/II simulators, respectively, to cool the elevated air temperature from the compressor to about $-183^{\circ}C$ in the air liquefaction separation process. The required amount of electricity was compared with the latent heat utilization fraction of LNG, the LNG supply pressure, and the LNG cold energy usage. At the air flow rate of $17,600m^3/h$, the power source unit of the Linde cycle system was $0.77kWh/m^3$, compared with $0.3kWh/m^3$.

A Study on the District Community Cooling System using LNG Cold Energy (LNG 냉열이용 지역집단 냉방시스템에 대한 연구)

  • Kim, Chung-Kyun;Kim, Seung-Chul
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.6
    • /
    • pp.27-30
    • /
    • 2010
  • This paper presents the system design process of district community cooling system using LNG cold energy. The newly developed LNG cooling system includes several heat exchangers, LNG storage tank, thermal mass storage tank, several cold energy storage tanks, gas air-conditioners, compressors, constant pressure regulators, cold energy and hot energy supply pipes. In addition, the gas air-conditioner system is installed to supply not sufficient cold energy due to low level of city gas consumptions during a summer period. This system design is very effective and safe to supply cold energy mass of fresh air by exchanging two thermal masses of an air and 200kcal/kg cold energy of LNG. The district community cooling system with LNG cold energy does not produce CO2 and freon gases in the air.

A Study of Simulation on the Refrigerated Warehouse System Based on the Cold Energy of Lng Using the Pro-Ii Simulator (LNG 냉열을 이용한 냉장·냉동 창고 모사에 관한 연구)

  • HAN, DANBEE;KIM, YOONJI;YEOM, KYUIN;SHIN, JAERIN;BAEK, YOUNGSOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.4
    • /
    • pp.401-406
    • /
    • 2017
  • When Liquified Natural Gas (LNG) is vaporized into NG for industrial and household usage, tremendous cold energy was transferred from LNG to seawater during phase-changing process. This heat exchanger loop is not only a waste of huge cold energy, but will cause thermal pollution to the coastal fishery area also when cold water was re-injected into the sea. In this study, an innovation design has been performed to reclaim the cold energy for -35 to $62^{\circ}C$ refrigerated warehouse. Conventionally, this was done by installing mechanical refrigeration systems, necessitating tremendous electrical power to drive temperature. A closed loop LNG heat exchangers in series was designed to replace the mechanical or vapor-compression refrigeration cycle by process simulator. The process simulation software of PRO II with provision has been used to simulate this process for various conditions, what to effect on cold energy and used energy for re-liquefaction and evaporation process. In addition, through analysis the effect of the change of LNG supply pressure on sensible and latent heat, optimum operational conditions was suggested for LNG cold energy warehouse.

Design and Analysis for Hydrogen Liquefaction Process Using LNG Cold Energy (LNG냉열이용 수소액화 공정해석 및 설계)

  • Yun, Sang-Kook
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.3
    • /
    • pp.1-5
    • /
    • 2011
  • For the hydrogen liquefaction, the large amount of energy is consumed, because precooling, liquefaction and ortho/para conversion heats should be eliminated. In this paper the basic design and thermal analysis are carried out to reduce the energy consumption by using LNG cold energy for precooling process in hydrogen liquefaction processes. The LNG cold energy utilization for hydrogen precooling enables not only to get energy saving for liquefaction, but to recover the wasted cold energy to sea water at the LNG terminal. The results show that the energy saving rate for liquefaction using LNG cold energy is almost 75% of current industrial hydrogen liquefaction plant. The demand flow-rate of LNG is only 15T/D for 1T/D hydrogen liquefaction.

Effect of the Array Type of Heat Exchangers on Performance of Refrigerated Warehouse for Utilization of LNG Cold Energy (LNG 냉열활용을 위한 열교환기의 배열 형태가 냉동창고 성능에 미치는 연구)

  • HAN, DANBEE;KIM, YUNJI;BYUN, HYUNSEUNG;BAEK, YOUNGSOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.3
    • /
    • pp.282-288
    • /
    • 2019
  • When liquefied natural gas (LNG) is vaporized to form natural gas for industrial and household consumption, a tremendous amount of cold energy is transferred from LNG to seawater as a part of the phase-change process. This heat exchange loop is not only a waste of cold energy, but causes thermal pollution to coastal fishery areas by dumping the cold energy into the sea. This project describes an innovative new design for reclaiming cold energy for use by cold storage warehouses (operating in the 35 to $62^{\circ}C$ range). Conventionally, warehouse cooling is done by mechanical refrigeration systems that consume large amounts of electricity for the maintenance of low temperatures. Here, a closed loop LNG heat exchange system was designed (by simulator) to replace mechanical or vapor-compression refrigeration systems. The software PRO II with PROVISION V9.4 was used to simulate LNG cold energy, gas re-liquefaction, and the vaporized process under various conditions. The effects on sensible and latent heats from changes to the array type of heat exchangers have been investigated, as well as an examination of the optimum.

Simulation Study on the Application of LNG Cold Energy for Hydrogen Liquefaction Process (수소액화공정에서 LNG 냉열 적용에 관한 시뮬레이션 연구)

  • HAN, DANBEE;BYUN, HYUNSEUNG;BAEK, YOUNGSOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.1
    • /
    • pp.33-40
    • /
    • 2020
  • As hydrogen utilization becomes more active recently, a large amount of hydrogen should be supplied safely. Among the three supply methods, liquefied hydrogen, which is an optimal method of storage and transportation convenience and high safety, has a low temperature of -253℃, which is complicated by the liquefaction process and consumes a lot of electricity, resulting in high operating costs. In order to reduce the electrical energy required for liquefaction and to raise the efficiency, hydrogen is cooled by using a mixed refrigerant in a precooling step. The electricity required for the precooling process of the mixed refrigerant can be reduced by using the cold energy of LNG. Actually, LNG cold energy is used in refrigeration warehouse and air liquefaction separation process, and a lot of power reduction is achieved. The purpose of this study is to replace the electric power by using LNG cold energy instead of the electric air-cooler to lower the temperature of the hydrogen and refrigerant that are increased due to the compression in the hydrogen liquefaction process. The required energy was obtained by simulating mixed refrigerant (MR) hydrogen liquefaction system with LNG cold heat and electric system. In addition, the power replacement rate of the electric process were obtained with the pressure, the temperature of LNG, the rate of latent heat utilization, and the hydrogen liquefaction capacity, Therefore, optimization of the hydrogen liquefaction system using LNG cold energy was carried out.