• Title/Summary/Keyword: Cold Drawing

Search Result 113, Processing Time 0.035 seconds

Design of mandrel in tube drawing process for automotive steering input shaft (자동차용 SIS 인발 공정에서의 맨드렐 형상 설계)

  • Kim S. W.;Lee Y. S.;Kwon Y. N.;Lee J. W.;Lee J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.198-201
    • /
    • 2005
  • Monobloc technology Provides a homogeneous material along the complete tubular shaft without any discontinuity between the interconnecting tube and the stems as is found when the tubes and stems have been Joined by welding. Cold tube drawing is a technique that can be applied for manufacturing of those monobloc tubular shafts with several advantages such as high productivity and cost reduction. The present study is concerned with the investigation about the process parameters related with tool configuration. In order to obtain successfully formed SIS(Steering Input Shaft) without any defects, advanced design of mandrel is presented and analyzed by the FEM and ductile fracture criterion in this paper.

  • PDF

Numerical Simulation for a Multi-Stage Deep Drawing of Anisotropic SUS409L Sheet into a Rectangular Cup (초기 이방성 SUS409L 박판재의 직사각 컵 성형을 위한 다단 디프드로잉 공정 적용에 관한 수치적 연구)

  • Park, J.W.;Ku, T.W.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.22 no.3
    • /
    • pp.133-142
    • /
    • 2013
  • Recently, electric vehicles and hybrid cars are being promoted as alternatives to reduce automobile emissions. Generally, thin sheet materials such as aluminum alloy AA300X and cold-rolled steel sheet such as JIS-G-3141 are used for the container for the lithium-ion secondary batteries. In this study, a multi-stage deep drawing process is used to produce a rectangular cup from thin stainless steel sheet material, SUS409L, with an initial blank thickness of 0.4mm for the battery container application. Numerical simulations of the first through the fifth stages for the multi-stage deep drawing with thin SUS409L sheet were conducted using LS-Dyna3D Implicit/Explicit. Special consideration was given to the deformation characteristics due to the normal anisotropy of the sheet material. The numerical simulations were conducted with both isotropic properties and the anisotropic properties of the initial blank material. An unexpected forming failure, barreling in the bottom region of the deep drawn rectangular cup, was observed. This failure mode can be avoided by additional ironing thickness control during the process.

Optimization of Dies Angles to Improve the Dimensional Accuracy and Straightness of the Shaped Drawn Product based on the FE Simulation and the Taguchi Method (유한요소해석 및 다구찌법을 이용한 형상인발제품 치수정도 및 진직도 향상을 위한 다이스각 최적화)

  • Lee, Sang-Kon;Lee, Jae-Eun;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.6
    • /
    • pp.474-480
    • /
    • 2008
  • Recently, rods having irregular sections more complex than a rectangle or ellipse are necessary to produce mechanical parts. The cold shaped drawing process is used to obtain shaped drawn products with high levels of dimensional accuracy and quality. A cross roller guide, considered in this study, is one of the parts produced by shaped drawing process. A cross roller guide has a linear bearing system that rolls along a guide way. A cross roller guide is one of the most important components in terms of equipment because the quality of the product influences the precision linear motion. Therefore, the final dimensional accuracy of the linear rail in the shaped drawing is very important. The objective of this study is to find the optimized die angles to improve the dimensional accuracy and straightness of the final shaped drawn product. In order to achieve the aim of this study, design of experiment, FE-simulation, and the Taguchi method were used. Based on the analytical results, shaped drawing experiment has been performed to verify the result.

Drawing Process Design and Mechanical Properties Control for High Strengthening of CP Titanium (순수 타이타늄 고강도화를 위한 인발공정설계 및 기계적 특성 제어 기술)

  • Choi, Seong Woo;Park, Chan Hee;Lee, Sang Won;Yeom, Jong Taek;Hong, Jae Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.2
    • /
    • pp.77-81
    • /
    • 2017
  • CP (Commercially Pure) titanium has been widely used in various industries such as in energy plants and bio-materials because of an excellent corrosion resistance and its non-toxicity to the human body. But there are limitations for usage as structural materials due to low strength. The tensile properties of CP titanium could be improved by microstructure refinement such as in a SPD (Severe Plastic Deformation) process. However, high strengthening of CP titanium wire is impossible by SPD processes like ECAP (Equal Channel Angular Pressing), HPT (High-Pressure Torsion), and the ARB (Accumulative Roll Bonding) process. The study purposes are to increase the strength of CP titanium wire by optimization of the cold drawing process and the harmonization with mechanical properties by heat treatments for the next forming process. The optimization process was investigated with regard to the design of drawing dies and the reduction ratio of cross sections. The elongations of high strength CP titanium were controlled by heat treatment.

Computer-Aided Process Planning System of Cold Forging and its Verification by F.E. Simulation (냉간단조 공정설계 시스템과 유한요소해석에 의한 검증)

  • Lee, E.H.;Kim, D.J.;Park, J.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.4
    • /
    • pp.43-52
    • /
    • 1996
  • This paper describes interactive computer procedures for design the forming sequences in cold forging. This system is implemented on the personal computer and its environment is a commercial AutoCAD system. The programming language. AutoLISP, was used for the configuration of the system. Since the process of metal forming can be considered as a transformation of geometry, treatment of the geometry of the part is a key in process planning. To recognize the part section geometry, the section entity representation, the section coordinate-redius representation and the section primitive geometru were adopted. This system includes six major modules such as input module, forging design module, forming sequence design module, die design module, FEM verification module and output module which are used independently or in all. The sequence drawing wigh all dimensions, which includes the dimensional tolerances and the proper sequence of operations, can generate under the environment of AutoCAD. The acceptable forming sequences can be verified further, using the FE simulation.

  • PDF

Prediction Model of Surface Residual Stress for Multi-Pass Drawn High Carbon Steel Wire (고탄소강 다단 신선 와이어의 표면 잔류응력 예측모델)

  • Kim, D.W.;Lee, S.K.;Kim, B.M.;Jung, J.Y.;Ban, D.Y.;Lee, S.B.
    • Transactions of Materials Processing
    • /
    • v.19 no.4
    • /
    • pp.224-229
    • /
    • 2010
  • During the multi-pass wire drawing process, wires suffer a great amount of plastic deformation that is through the cross-section. This generates tensile residual stress at surface of drawn wires. The generated residual stress on surface is one of the problems for quality of wires so that prediction and reduction of residual stresses is important to avoid unexpected fracture. Therefore, in this study, the effect of process variables such as semi-die angle, bearing length and reduction ratio on the residual stress was evaluated through Finite Element Analysis. Based on the results of the Analysis, a prediction model was established for predicting residual stress on the surface of high carbon steel(AISI1072, AISI1082). To identify the effectiveness of the proposed model, X-ray diffraction is used to measure the residual stresses on the surface. As the result of the comparison between calculated residual stresses and measured residual stresses, the model could be used to predict residual stresses in cold drawn wire.

The ]Relationship between Strain Ageing And Delamination Occurrence of Drawn Steel Wires (신선가공 고탄소 강선에서의 시효현상과 딜라미네이션 발생간의 상관관계 고찰)

  • Lee, J.W.;Lee, J.C.;Gang, U.G.;Lee, Y.S.;Park, K.T.;Nam, W.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.231-234
    • /
    • 2009
  • The effects of annealing temperature and time on mechanical properties and microstructures were already investigated in cold drawn pearlitic steel wires. During annealing, the increment of the tensile strength at low temperatures found to be due to age hardening, while the decrease in the tensile strength at high temperatures was attributed to age softening, involving the spheroidization of lamellar cementite and recovery of lamellar ferrite. Since Between increase of tensile strength and the occurrence of the delamination would be closely related to the dissolution of cementite, the increase of drawing strain by lower annealing temperature caused the between higher tensile strength and the easier occurrence of the delamination in cold drawn pearlitic steel wires.

  • PDF

Automatic Process Planning Design and Finite Element Method for The Multistage Cold Forged Parts (다단 냉간단조품의 자동공정설계시스템과 유한요소법)

  • 최재찬;김병민;이언호;김동진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.200-205
    • /
    • 1993
  • The automatic forming sequence design system can determine desirable operation sequences even if they have little experience in the design of cold forging process. This system is proposed,which generates forming sequence plans for the multistage cold forging of zxisymmetrical solid products. Since the process of metal forming can be considered as a transformation of geometry, treatment of the geometry of the product is a key in planning processes. Forming sequence for the part can be determined by means of primitive geometries such as cylinder,cone, convex, and concave. By utilizing this geometrical characteristics(diameter,height, and radius),the product geometry is expressed by a list of the pnmitive geometries. Accordingly, the forming sequence design is formulated as the search problem which starts with a billet geometry and finishes with a given product one. Using the developed system, the sequence drawing with all dimensions, which includes the proper sequence of operations for the part, is generated under the environment of AutoCAD. The preliminary choice of some feasible forming sequences can verify by using the finite element simulation.

  • PDF

Experimental study on the improvement of cold startability of methanol (M85) fueled engine (메탄올(M85) 엔진의 냉시동성 개선을 위한 실험적 연구)

  • 이시훈;신영기;황상순
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.71-79
    • /
    • 1992
  • Recently, air pollution and energy security problems have necessitated the development of alternative fuel vehicles. As an alternative fuel vehicle FFV(Flexible Fuel Vehicle) which can be operated by and mixture between gasoline and M85(methanol 85% and gasoline 15% by vol. percent) has been drawing great attention. But poor cold startability of high methanol- content fuel which is characteristic of lower fuel volatility and higher latent heat of vaporization than gasoline is one of the major problems to be solved for the development of FFV. In this paper, important factors influencing cold startability of general S.I. engines are described. And, so-me cost-effective and practical methods were investigated in view of the optimization of fuel-ing parameters and ignition system for M85 fuel. The test results showed good startability up to (-22)-(-23).deg.C.

  • PDF

Automatic Process Design System for Cold Forging of Fasteners with Various Head Geometries (다양한 머리 형상을 갖는 체결구의 냉간 단조 자동 공정 설계 시스템)

  • 김홍석;임용택
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.10a
    • /
    • pp.141-148
    • /
    • 1994
  • In order to improve the productivity of cold forging at low production cost, an integrated system's approach is necessary in handling the material preparation and the optimum process design, considering the forming machines, tooling, and operation including quality control. As the first step toward this approach, an expert system for multi-stage cold forging process design for fasteners with various head geometries is developed using Prolog language on IBM 486 PC. For effective representation of the complex part geometries, the system uses the multiple element input, and the forward inference scheme in determination of the initial billet size and intermediate forging steps. In order to determine intermediate steps, the basic empirical rules for extrusion, heading, and trimming were applied. The required forming loads and global strain distributions at each forging step were calculated and displayed on the PC monitor. The designed process sequence drawing can be obtained by AutoCAD. The developed system will be useful in reducing trial and error of design engineers in determining the diameter and height of the initial cylindrical billet from the final product geometry and the intermediate necessary sequences.

  • PDF