• 제목/요약/키워드: Cold Bending

검색결과 121건 처리시간 0.024초

Development of miniature bar-type structural fuses with cold formed bolted connections

  • Guan, Dongzhi;Yang, Sen;Jia, Liang-Jiu;Guo, Zhengxing
    • Steel and Composite Structures
    • /
    • 제34권1호
    • /
    • pp.53-73
    • /
    • 2020
  • A novel all-steel miniature bar-type structural fuse (MBSF) with cold formed bolted connections is developed in this study, which consists of a central energy dissipation core cut from a smooth round bar, an external confining tube and nuts. Three types of cross sections for the central energy dissipation core, i.e., triple-cut, double-cut and single-cut cross sections, were studied. Totally 18 specimens were axially tested under either symmetric or asymmetric cyclic loading histories, where the parameters such as cut cross sectional area ratio, length of the yielding portion and cross sectional type were investigated. Numerical simulation of 2 representative specimens were also conducted. An analytical model to evaluate the bending failure at the elastic portion was proposed, and a design method to avoid this failure mode was also presented. The experimental results show that the proposed MBSFs exhibit satisfactory hysteretic performance under both the two cyclic loading histories. Average strain values of 8% and 4% are found to be respectively suitable for designing the new MBSFs as the ultimate strain under the symmetric and asymmetric cyclic loadings.

열처리가 Elgiloy 선재의 기계적 성질에 미치는 영향 (THE EFFECTS OF HEAT TREATMENT ON THE MECHANICAL PROPERTIES OF THE ELGILOY WIRE)

  • 허택;이병태;최석규;김형일
    • 대한치과교정학회지
    • /
    • 제22권3호
    • /
    • pp.557-578
    • /
    • 1992
  • Heat treatment which removes internal stress enhances the mechanical properties of the orthodontic arch wire. The main purpose of this experiment was to investigate the effects of the heat treatment on the mechanical properties of the Elgiloy wire. The Elfiloy wire, 0.016' X 0.022' and 0.018' X 0.025', were heat treated in an electric oven for 5, 10 and 15 minutes at selected temperatures between 300 and $900^{\circ}C$. Tensile strength and load deflection rate were measured to reveal the changes of mechanical property at various conditions, and each specimen was observed under metallurgic microscope. Also to trace the precipitation material due to overheat treatment, a qualitative analysis was carried out with EDS system. It was found that heat treatment at a low temperature caused an increase in the tensile strength and bending resistance, and a maintenance in the fibrous in the tensile strength and bending resistance, and a maintenance in the fibrous structure of both sizes of wire. The changes observed in properties and appearance were probably due to the relief of internal stresses incurred in the metal during cold working. In both sizes of wire the tensile strength and the bending resistance continued to decrease at high temperature, and the fibrous structure continued to disappear then was not observed at $900^{\circ}C$. The carbide precipitation founded in grain boundary at $750^{\circ}C$ probably was other elements carbide (Ni, Co) except Cr. The grain growth was observed at $1100^{\circ}C$. Optimum heat treatment for the 0.016' X 0.022' Elgiloy wire was 10 minutes at $500^{\circ}C$, and for the 0.018' X 0.025' Elgiloy wire it was 5 to 15 minutes at $500^{\circ}C$.

  • PDF

제2인산(第二燐酸) 암모늄에 의(依)한 합판(合板)의 내화처리(耐火處理)(II) - 열판온도(熱板溫度)가 처리합판(處理合板)의 곡강도(曲强度)에 미치는 영향(影響) - (Fire Retardant Treatment to the Plywood with Di-ammonium Phosphate [(NH4)2HPO4] (II) - Effect of Platen Temperature on Bending Strength of Treated Plywoods -)

  • 정우양;이필우
    • Journal of the Korean Wood Science and Technology
    • /
    • 제12권2호
    • /
    • pp.3-9
    • /
    • 1984
  • This study was carried out to examine the practicality of DAP[$(NH_4)_2HPO_4$] as fire retardant for plywood by static bending test the redried plywoods which had been soaked in 20% $(NH_4)_2HPO_4$ solution. Being hot/cold soaked in the solution for 3/3, 6/3, 9/3 and 12/3 hours and redried by cyclic press-drying method at the platen temp. of 130, 145, 100 and $175^{\circ}C$, the treated plywoods were tested to offer the mechanical data, that is, $S_{pl}$(stress at proportional limit), MOE(modulus of elasticity), MOR(modulus of rupture) and $W_{pl}$(work per unit volume to proportional limit ) in flexure. The results obtained were summarized as follows. 1. $S_{pl}$ of fire retardant treated plywoods ("FRP" would be used hereinafter) decreased as the platen temperature increased, but it was superior to that of non-treated plywoods(Control) at $160^{\circ}C$ or higher. 2. MOE of FRP decreased roughly with the increase of temperature, hut this tendency was not constant. And the value of FRP was higher than that of Control even at $175^{\circ}C$. 3. MOR of FRP showed same temperature-dependent tendency as MOE, but it was influenced more sensitively at the higher temperature. 4. $W_{pl}$ of FRP also decreased gradually with the increase of platen temperature and the value in DAP 9/3 treatment was Jess than 70% of control plywoods. 5. In view of redrying time and mechanical properties, the most reasonable platen temperature for DAP treated FRP was $160^{\circ}C$ in this study.

  • PDF

실리콘 강판 냉간압연 중 발생하는 롤갭 형상변화에 의한 가공파손에 관한 실험적 분석 (Experimental Investigation of Working Fracture in Silicon Steel Strip Occurring Due to Change in Roll-Gap Profile in Cold Rolling)

  • 변상민;이재현;김상록;최현식
    • 대한기계학회논문집A
    • /
    • 제34권9호
    • /
    • pp.1299-1304
    • /
    • 2010
  • 압연실험을 통해서 폭 방향 변형 편차가 존재하는 실리콘 강판의 가공파손을 고찰하였다. 폭 방향 변형 편차는 강판에 웨이브를 발생시키고 압연방향으로 소재의 에지 부위(혹은 센터 부위)에 인장(혹은 압축)을 준다. 실제 압연기에서 발생하는 웨이브를 실험실적으로 구현하기 위해서 공형롤을 설계 및 제작하였다. 실험에 사용한 소재는 고-실리콘(약 3%) 강판이다. 본 실험을 통해서 센터 웨이브에 의해 발생되는 에지 부위 인장응력이 가공파손에 가장 지배적인 요인이라는 것이 제시되었다. 센터 웨이브를 일으키는 폭 방향 변형 편차의 정도에 따라 에지 파손과 지그재그 형태의 시편 중심 절손을 유발한다는 결과도 도출하였다.

반응성염료를 이용한 스트링벽지 패딩염색에 관한 연구 (A Study on the Cold Pad Batch Dyeing of a String Wallcovering with Reactive Dyestuff)

  • 이준한;강영웅;김선미
    • 패션비즈니스
    • /
    • 제21권2호
    • /
    • pp.105-112
    • /
    • 2017
  • A string wallcovering is a kind of textile wallcovering which is made of cellulose fiber yarn laminated on base paper. Compared with normal paper or PVC wallpaper, a string wallcovering is preferred continually in the interior design market, as it is not only environmentally friendly but it also has less cost on mass production without the weaving process and has a natural visual effect, excellent functionality such as thermo keeping, permeability, sound absorption. However, in the dyeing process, it is not appropriate to use plenty of energy such as water, electricity, steam or chemicals considering the environmental trend and the government policy plenty of energy such as water, electricity, steam or chemicals. Currently, a string wallcovering is made of raw white yarn and padding with direct dye or pigment which includes toxic elements, especially the use of direct dye is restricted in a part of the developed country due to inclusion of azo. In this study, we researched dyeing based on cold pad batch dyeing of a string wallcovering with reactive dyestuff. The peel strength and bending depth test confirmed that the optimum adhesive type and spread amount improved the water resistance of the string wallcovering. Also, pad batch dyeing with optimum reactive dyestuff enhanced the color fastness to light and rubbing in dry and wet conditions. Additionally, for improvement of color fastness to rubbing in a wet condition, the additional treatment finishing without soaping process which is used water. The results of this study can be used as basic data for environmentally friendly and energy saving of the textile wallcovering.

각형강관 T형 접합부의 면내 휨모멘트 평가 (Evaluation on the In-plane Bending Moment for T-joints with Square Hollow Structural Sections)

  • 박금성;이상섭;최영환;배규웅
    • 한국강구조학회 논문집
    • /
    • 제21권5호
    • /
    • pp.451-459
    • /
    • 2009
  • 본 논문은 냉간성형 각형강관 T형 접합부의 면내 휨모멘트를 평가하는데 목적이 있다. 이전 연구로부터, 주관 폭에 대한 지관 폭의 비가 0.71이하인 T형 접합부는 뚜렷한 최대 휨강도를 나타내지 못하는 접합부의 파괴모드는 주관 플랜지의 휨파괴이다. Zhao에 의해 수행된 실험을 포함한 결과로부터 주관 폭두께비는 ${16.7{\leq}2{\gamma}(=B/T){\leq}33}$이고, 주관 폭에 대한 지관 폭의 비인 폭비는 ${0.34{\leq}{\beta}(=b_{1}/B){\leq}0.71}$의 범위인 냉간성형 각형강관 T형 접합부에 대한 최대 휨강도 정의를 위한 변형제한치는 주관폭(B)의 1% 변형이며, 최대 휨강도는 1.5M1%B로 정의할 수 있다. 기본형에 대한 항복선 모델과 기존 연구자들에 의해 수정 제안된 항복선 모델식을 검토하여 실험결과와 비교한 결과, Zhao의 제안식이 가장 좋은 대응도와 분포도를 보였다. 따라서, 각형강관 T형 접합부에 대한 면내 설계 휨강도식으로 Zhao가 수정 제안한 항복선 모델식을 적용하는 것이 가장 합리적인 것으로 생각된다.

연속압입시험에 의한 발전소용 배관의 용접잔류응력 평가에 관한 연구 (A Study on the Evaluation of Welding Residual Stress of Pipe used in Power Plant by Indentation Method)

  • 박상기;최원두;길두송;고준빈;이규천;이영호
    • 동력기계공학회지
    • /
    • 제8권2호
    • /
    • pp.12-17
    • /
    • 2004
  • In this study, to verify the reliability of the indentation for measuring welding residual stresses to get in method we compared the results of the method with those measured by the saw cutting method. Also for the same purpose we used a 4-point bending test and confirmed the reliability of indentation method. The specimens used in this experiment are made with the same conditions for hot reheater pipes and cold reheater pipes used in the electric power plant. Therefore we could know that the results of the methods showed the reliability of the method to obtain welding residual stresses.

  • PDF

기판재료로서의 물라이트-코디어라이트 복합재료에 관한 특성 (Studies of the Mullite-Cordierite Composites as a Substrate Material)

  • 김경용;김윤호;정형진;김석수;김병호
    • 한국세라믹학회지
    • /
    • 제27권3호
    • /
    • pp.394-400
    • /
    • 1990
  • Mullite and cordierite were prepared by the sol-gel route. Boehmite, fumed silica and Mg(NO3)2$.$6H2O were their starting materials. Mullite and cordierite powder were mixed by various weight percent. These mixed sols were ball-milled for 48hrs, dried at 100$^{\circ}C$, pressed, cold isostatic pressed and sintered at 1490$^{\circ}C$ for 2hrs. Mullite-cordierite composites sintered at 1490$^{\circ}C$ for 2hrs had>98% of theoretical density. Bending strength of the sintered bodies were 329-249MPa, dielectric constant 7.1-6.7 at 1MHz and thermal expansion coefficient at 800$^{\circ}C$ was matched with Si in the range of 30-35wt% cordierite.

  • PDF

Bi-2223/Ag 고온초전도 장선재의 제조 (Fabrication of long length Bi-2223/Ag HTS tape)

  • 김상철;이동훈;하동우;오상수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 추계학술대회 논문집 Vol.17
    • /
    • pp.69-72
    • /
    • 2004
  • In order to use HTS tape on electric power applications, such as cable, motor, transformer, fault current limiter, a long length of HTS tape with a good uniformity of critical current is inevitable. The longer length of HTS tape, the wider in the range of application and the lower cost of HTS tape. In this study three long length Bi-2223/Ag tapes(268m, 253m and 187m) were fabricated. Critical current uniformity along the length was greatly improved through the optimization of cold deformation and thermo-mechanical process. Average critical current of the tapes was 63.2 A, 54.6 A and 64.2 A, respectively Critical tensile strength and critical bending radius (77 K, 5 % Ic degradation) was 135 MPa and 56 m, respectively.

  • PDF

보론강판의 열간 벤딩 공정에서 성형인자가 기계성질에 미치는 영향 (The Effect of Forming Parameter on Mechanical Properties in Hot Bending Process of Boron Steel Sheet)

  • 권기영;신보성;강충길
    • 소성∙가공
    • /
    • 제19권4호
    • /
    • pp.203-209
    • /
    • 2010
  • In the hot press forming process (HPF), a martensitic structure is obtained by controlling the cooling rate when cooling a boron sheet that is heated up to over $900^{\circ}C$. The HPF process has various advantages such as the improvement in formability and material properties and minimal spring back of the deformed materials. The factors related to the cooling rate depend on the heat transfer characteristics between heated materials and dies. Therefore, in this study, the cooling rate is controlled by adjusting the heat transfer coefficient of the material at the pressing process. And, the mechanical properties and microstructure of the deformed material is demonstrated during the HPF process where cold dies are used to form the heated steel plate. This is achieved by varying the major forming conditions that control the cooling rate regarded as the most important process parameter.