• Title/Summary/Keyword: Coin type

Search Result 70, Processing Time 0.025 seconds

The Characteristic Improvements of One-Coil Coin Type Vibration Motor (One-Coil Coin Type Motor의 특성 개선)

  • Kwak, Dong-Soo;Kim, Sang-Gil;Shin, Heung-Kyo;Kweon, Chang-Myoung
    • Proceedings of the KIEE Conference
    • /
    • 2000.11b
    • /
    • pp.327-329
    • /
    • 2000
  • This paper present the characteristic improvements of one-coil coin type vibration Motor. Rotor is consist of coreless coil and 4 segment commutator. Magnet is 4 pole, z direction magnetized. This one-coil coin type vibration motor has simple mechanical structure and good efficiency. So production cost is lower than other having 2 or more coils coin type motor but it has the weak points. That is small vibration magnitude and dead zone. Modifying the shape of rotor, vibration magnitude is increased. To avoid the dead zone we attached more magnetic body on rotor. As result we show the optimal position of magnetic body.

  • PDF

Manufacturing of 2025 Coin Type PAn/Li-Al Secondary Battery (2025 Coin형 PAn/Li-Al 2차전지의 제조)

  • Moon, Seong-In;Yun, Mun-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.202-206
    • /
    • 1990
  • The existing batteries such as lead acid battery and Nicad battery have been at serious issue, because heavy metal such as Pb and Cd give rise to environmental pollution. Therefor, when these material is changed over polymeric electroactive material, we expect environmental pollution will be prevented. We decided to develop 2025 coin type PAn/Li-Al secondary battery for goal of memory back-up battery. This report is concerned with manufacturing of 2025 coin type PAn/Li -Al secondary battery.

  • PDF

Effect of Electrolyte Amounts on Electrochemical Properties of Coin-Type Lithium-Ion Cells (액체전해액의 함량에 따른 리튬이온전지 코인셀의 전기화학적 특성 연구)

  • Yoon, Byeolhee;Han, Taeyeong;Kim, Seokwoo;Jin, Dahee;Lee, Yong min;Ryou, Myung-Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.21 no.2
    • /
    • pp.39-46
    • /
    • 2018
  • Many studies on the electrochemical performance of Li secondary batteries have been obtained using coin-type cells due to the ease of assembly, low cost and ensuring reproducibility. The coin-type cell consists of a case, a gasket, a spacer disk, and a wave spring. These structural features require a greater amount of liquid electrolyte to assemble than other types of cells such as laminated cells and cylindrical cells. Nevertheless, little research has been conducted on the effect of excess liquid electrolytes on the electrochemical performances of Li secondary batteries. In this study, we investigate the effect of different amounts of electrolyte on the coin-type cells. The amount of electrolytes is adjusted to 30 and $100mg\;mAh^{-1}$. Cycle performances at room temperature ($25^{\circ}C$) and high temperature ($60^{\circ}C$) and high voltage are performed to investigate the electrochemical properties of the different amount of electrolytes. In the case of the unit cell including the electrolyte of $30mg\;mAh^{-1}$, the discharging capacity retention characteristic is excellent in comparison with the case of $100mg\;mAh^{-1}$ under the high temperature and high voltage condition. The former shows a larger increase in internal resistance than the latter, confirming that the amount of electrolyte significantly influences the discharge capacity retention characteristics of the battery.

Estimation of Stress Status Using Biosignal and Fuzzy theory (생체신호와 퍼지이론을 이용한 스트레스 평가에 관한 연구)

  • 신재우;윤영로;박세진
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 1998.04a
    • /
    • pp.171-175
    • /
    • 1998
  • This work presents an estimation for stress status using biosignal and fuzzy theory. Stress is estimated by 'coin-build' experiment with two type, relax and stress status. The estimator uses five biosignals, fuzzy logic to combine these signals and physiological knowledge. The system was tested in 10 records of healthy indivisuals and acheived a template of a stress progress. This work presents an estimation for stress status using biosignal and fuzzy theory. Stress is estimated by 'coin-build' experiment with two type, relax and stress status. The estimator uses five biosignals, fuzzy logic to combine these signals and physiological knowledge. The system was tested in 10 records of healthy indivisuals and acheived a template of a stress progress.

  • PDF

Development of Automatic Vending Machine with Compact Size (소형 자판기의 설계 및 제작)

  • Koo, K.W.;Lee, Y.W.;Kim, B.S.;Hwang, J.H.;Yang, J.J.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.400-402
    • /
    • 1999
  • We have developed a new type Automatic Vending Machine(AVM) of a small size with simplification of coin mechanisms. The AVM adopts a new type transportation system named thin film-transportation system. Thin films have advantages of safe guide and transportation of various goods which made from various materials and shapes. The AVM has advantages of low price and simple mechanisms. The compact size($300{\times}330{\times}630$, mm)is realized by the use of simple coin mechanisms and thin-transportation system.

  • PDF

Study on the Casting Technology and Restoration of "Sangpyong Tongbo" (상평통보 주조와 복원기술연구)

  • Yun, Yong-hyun;Cho, Nam-chul;Jeong, Yeong-sang;Lim, In-ho
    • Korean Journal of Heritage: History & Science
    • /
    • v.47 no.4
    • /
    • pp.224-243
    • /
    • 2014
  • This study examined the materials and casting technology(cast, alloy, etc.) used in the manufacturing of bronze artifacts based on old literature such as Yongjae Chonghwa, Cheongong Geamul, and The Korea Review. In the casting experiment for restoration of Sangpyong Tongbo, a bronze and brass mother coin mold was made using the sand mold casting method described in The Korea Review. The cast was comprised of the original mold plate frame, wooden frame, and molding sand. Depending on the material of the outer frame, which contains the molding sand, the original mold plate frame can be either a wooden frame or steel frame. For the molding sand, light yellow-colored sand of the Jeonbuk Iri region was used. Next, the composition of the mother alloy used in the restoration of Sangpyong Tongbo was studied. In consideration of the evaporation of tin and lead during actual restoration, the composition of Cu 60%, Zn 30%, and Pb 10% for brass as stated in The Korea Review was modified to Cu 60%, Zn 35%, and Pb 15%. For bronze, based on the composition of Cu 80%, Sn 6%, and Pb 14% used for Haedong Tongbo, the composition was set as Cu 80%, Sn 11%, and Pb 19%. The mother coin mold was restored by first creating a wooden father coin, making a cast from the wooden frame and basic steel frame, alloying, casting, and making a mother coin. Component analysis was conducted on the mother alloy of the restored Sangpyong Tongbo, and its primary and secondary casts. The bronze mother alloy saw a 5% increase in copper and 4% reduction in lead. The brass parent alloy had a 5% increase in copper, but a 4% and 12% decrease in lead and tin respectively. Analysis of the primary and secondary mother coin molds using an energy dispersive spectrometer showed that the bronze mother coin mold had a reduced amount of lead, while the brass mother coin mold had less tin. This can be explained by the evaporation of lead and tin in the melting of the primary mother coin mold. In addition, the ${\alpha}$-phase and lead particles were found in the mother alloy of bronze and brass, as well as the microstructure of the primary and secondary coin molds. Impurities such as Al and Si were observed only in the brass mother coin mold.

Development of New Electroplating Alloy (Au-Cu) for Increasing the Durability of PCB Commutator in Vibration Motor (진동모터용 PCB 정류자의 내구성 향상을 위한 신 합금도금 (Au-Cu) 개발)

  • Kim, Young-Tae;Lee, Sung-Jae;Park, Sung-Jun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.6
    • /
    • pp.114-121
    • /
    • 2009
  • Mobile phone is a representative personal communication tool among wireless communication devices. Recently, with the miniaturization and light-weight trend of mobile phone, the vibration motor has been replaced by coin type. The required performances of coin type vibration motor needed by user are long life, higher vibration, and thin thickness. Also the most important factor determines the performance of vibration motor is long-term reliability, which is mainly related to PCB plating technique for commutator. In this study, three types of fault were categorized to analyze the cause for malfunction of vibration motor. And, hardness and surface morphology on plating surface are also investigated to optimize the plating method and plating conditions. As a result, new plating method and conditions were proposed to increase the durability of PCB commutator.

Synthesis and Electrochemical Characteristics of Carbon added Li3V2(PO4)3 (탄소첨가한 Li3V2(PO4)3의 합성 및 전기화학적 특성)

  • Jo, Yeong-Im;Na, Byung-Ki
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.2
    • /
    • pp.101-108
    • /
    • 2012
  • The purpose of this study was to improve the conductivity of $Li_3V_2(PO_4){_3}$ by adding carbon source so that the discharge rate and cyclic properties were improved. Glucose and CNT were added to $Li_3V_2(PO_4){_3}$ and the structure and electrochemical properties were studied. $Li_3V_2(PO_4){_3}$, $Li_3V_2(PO_4){_3}$/C and $Li_3V_2(PO_4){_3}$/CNT were synthesised by solid state reaction using hydrogen reduction method at 600, 700, 800, $900^{\circ}C$. The cathode materials were assembled to coin cell type 2032 with Lithium metal as a counter electrode. The coin cell was galvanostatically evaluated in the voltage range of 3.0~4.8 V.

Fabrication Characteristics and Performance Evaluation of a Large Unit Cell for Solid Oxide Fuel Cell (고체산화물연료전지용 대면적 단위전지 제조특성 및 성능평가)

  • Shin, Y.C.;Kim, Y.M.;Oh, I.H.;Kim, H.S.;Lee, M.S.;Hyun, S.H.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.13-16
    • /
    • 2008
  • Solid oxide fuel cell(SOFC) is an electrochemical energy conversion system with high efficiency and low-emission of pollution. In order to reduce the operating temperature of SOFC system under $800^{\circ}C$, the thickness reduction of YSZ electrolyte to be as thin as possible, e.g., less than 10 ${\mu}m$ are considered with the microstructure control and optimum design of unit cell. Methods for reducing the thickness of YSZ electrolyte have been investigated in coin cell. Moreover, a large unit cell($8cm{\times}8cm$) for SOFC was fabricated using an anode-supported electrolyte assembly with a thinner electrolyte layer, which was prepared by a tape casting method with a co-sintering technique. we studied the design factors such as active layer, electrolyte thickness, cathode composition, etc,. by the coin type of unit cell ahead of the fabrication process of a large unit cell and also reviewed about the evaluation technique of a large size unit cell such as interconnect design, sealing materials and current collector and so forth. Electrochemical evaluations of the unit cells, including measurements such as power density and impedance, were performed and analyzed. Maximum power density and polarization impedance of coin cell were 0.34W/$cm^2$ and $0.45{\Omega}cm^2$ at $800^{\circ}C$, respectively. However, Maxium power density of a large unit cell($5cm{\times}5cm$) decreased to 0.21W/$cm^2$ at $800^{\circ}C$ due to the increase of ohmic resistance. However, It was found that the potential value of a large unit cell loaded by 0.22A/$cm^2$ showed 0.76V at 100hrs without the degradation of unit cell.

  • PDF

A Rational Design of Coin-type Lithium-metal Full Cell for Academic Research (차세대 리튬 금속 전지 연구 및 개발을 위한 코인형 전지의 효율적 설계)

  • Lee, Mingyu;Lee, Donghyun;Han, Jaewoong;Jeong, Jinoh;Choi, Hyunbin;Lee, Hyuntae;Lim, Minhong;Lee, Hongkyung
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.3
    • /
    • pp.65-75
    • /
    • 2021
  • Coin cell is a basic testing platform for battery research, discovering new materials and concepts, and contributing to fundamental research on next-generation batteries. Li metal batteries (LMBs) are promising since a high energy density (~500 Wh kg-1) is deliverable far beyond Li-ion. However, Li dendrite-triggered volume fluctuation and high surface cause severe deterioration of performance. Given that such drawbacks are strongly dependent on the cell parameters and structure, such as the amount of electrolyte, Li thickness, and internal pressure, reliable Li metal coin cell testing is challenging. For the LMB-specialized coin cell testing platform, this study suggests the optimal coin cell structure that secures performance and reproducibility of LMBs under stringent conditions, such as lean electrolyte, high mass loading of NMC cathode, and thinner Li use. By controlling the cathode/anode (C/A) area ratio closer to 1.0, the inactive space was minimized, mitigating the cell degradation. The quantification and imaging of inner cell pressure elucidated that the uniformity of the pressure is a crucial matter to improving performance reliability. The LMB coin cells exhibit better cycling retention and reproducibility under higher (0.6 MPa → 2.13 MPa) and uniform (standard deviation: 0.43 → 0.16) stack pressure through the changes in internal parts and introducing a flexible polymer (PDMS) film.