• 제목/요약/키워드: Coil length

검색결과 213건 처리시간 0.025초

Development of Birdcage RF coil for 3T Animal MR Imaging

  • 추명자;최보영;강세권;최치봉;이형구;서태석
    • 한국의학물리학회지:의학물리
    • /
    • 제13권2호
    • /
    • pp.85-89
    • /
    • 2002
  • 목적 : 사람에 비하여 크기가 현저히 작은 동물의 자기공명영상 촬영을 위하여 상용으로 인체에 적용하는 Head 코일보다 원통 반지름이 작은 Low-Pass Type Birdcage 코일을 제작함으로써 보다 큰 신호대잡음비 (Signal-to-Noise Ratio. SNR)를 얻고자 하였다. 방법 : 자기공명영상을 얻기 위해 Spin Echo 펄스시퀀스와 Fast Spin Echo 펄스시퀀스를 사용하였다. T1 강조영상을 얻기 위한 Spin Echo 펄스시퀀스의 매개변수는 TR/TE=300/17 ㎳, Matrix=256$\times$256, Field Of View (FOV)=150 mm, Slice Thickness=2 mm 이었다. T2 강조영상을 얻기 위한 Fast Spin Echo 펄스시퀀스의 매개변수는 TR/TE=3000/96 ㎳, Matrix=256$\times$256, Field Of View (FOV)=150 mm, Slice Thickness=2 mm 이었다. 원통의 지름이 13 cm인 Birdcage 코일은 12개의 elements로 구성되어 있으며 길이는 22 cm로 제작되었다. 결과 : 코일 원통의 반지름의 크기에 따른 SNR을 비교하기 위하여 인체용 Knee 코일과 동물용으로 제작된 코일을 이용하여 각각의 팬톰 영상을 획득하였다. 팬톰 영상으로부터 측정된 SNR의 값을 통해 반지름이 작은 동물용 코일의 SNR이 더 크다는 걸 확인할 수 있었다. 토의 및 결론 : 본 연구를 통하여 같은 형태의 Birdcage 코일일 경우 원통의 반지름에 따라 SNR이 다르며, 특히 반지름이 작을 때 SNR이 더 크다는 것을 알 수 있었다. 따라서 코일의 크기에 비해 촬영하고자 하는 대상물의 부피가 작은 경우 대상물의 부피에 맞추어 코일을 제작하면 SNR이 보다 뛰어난 영상을 얻을 수 있을 것으로 사료된다.

  • PDF

반도체 소자를 이용한 테슬라 코일의 설계 및 제작 (A Study on Design and Implementation of the Tesla Coil using Semiconductor Device)

  • 김영선;김동진;이기식
    • 전기학회논문지
    • /
    • 제65권9호
    • /
    • pp.1571-1576
    • /
    • 2016
  • A Tesla coil is an electrical resonant transformer circuit invented by Nikola Tesla in 1891. It is used to produce high-voltage, low-current, high frequency alternating-current electricity. Tesla coil can generate a long streamer with several million volts of electricity as a high voltage device. It is basically consists of a voltage transformer, high voltage capacitor, spark gap, primary coil, secondary coil and toroid. It is difficult to appear in the output size of the streamer is controlled by the spark gap. The general decision method of the length of streamer is to display the electric output in accordance with the design specifications in initial development plan. Design specifications and the electric output is determined by the application of facilities. In this paper the spark gap is replaced with periodic switching semiconductor device to control output voltage easily in order to apply overvoltage protective circuit due to a secondary coil and a performance test. In these days, their main use is for entertainment and educational displays of the museum, although small coils are still used as leak detectors for high vacuum systems.

피투사체 속도 향상을 위한 코일건의 기구 변수 최적 설계 (Optimal Parametric Design of Coil Gun to Improve Muzzle Velocity)

  • 이수정;이주희;이동연;서태원;김진호
    • 한국생산제조학회지
    • /
    • 제23권4호
    • /
    • pp.408-412
    • /
    • 2014
  • An electromagnetic launching system presents a viable projectile propulsion alternative with low cost and minimal environmental drawbacks. A coil gun system propels a projectile using an electromagnetic force and the system is mainly employed in military weapon systems and space launch systems. In this paper, we perform optimization design to improve the muzzle velocity by analyzing the sensitivity. The muzzle velocity, which is the most important design function variable, is affected by design variables including the number of axial turns in the electromagnetic coil, number of radial turns in the electromagnetic coil, initial distance between the projectile and the coil, inner radius of the electromagnetic coil, and length of the projectile. An orthogonal arrays matrix is configured, and a finite element analysis is performed utilizing the commercial electromagnetic analysis software MAXWELL. The muzzle velocity of the optimal design is 62.4% greater than that of the initial design.

SQUID 2차미분기 성능 평가용 균일자기장 및 2차 미분 자기장 발생원 (Sources of uniform and 2nd-order gradient fields for testing SQUID performance)

  • 이순걸
    • Progress in Superconductivity
    • /
    • 제8권2호
    • /
    • pp.152-157
    • /
    • 2007
  • Uniaxial square Helmholtz coils for testing SQUID sensors were designed and their field distributions were calculated. Optimum parameters for maximizing the uniform region in the Helmholtz mode were obtained for different uniformity tolerances. The coil system consists of 2 pairs of identical square loops, a Helmholtz pair for generating uniform fields and the other for the 2nd-order gradient fields in combination with the Helmholtz pair. Full expressions of the axial component of the field were calculated by using Biot-Savart's law. To understand the behavior of the field near the coil center, analytical expressions were obtained up to the 4th-order in the midplane and along the coil axis. The Helmholtz condition for generating uniform fields was calculated to be $d/{\alpha}=0.544505643$, where 2d is the inter-coil distance and $2{\alpha}$ is the side length of the coil square. Maximized uniform range can be obtained for a given nonuniformity tolerance by choosing $d/{\alpha}$ slightly lower than the Helmholtz condition. The pure second-order gradient field can be generated by subtracting the Helmholtz field from the field of the 2nd pair with equal magnitudes of the center fields of the two pairs. The coil system is useful for testing balance and sensitivity of SQUID gradiometers.

  • PDF

Statistical analysis for HTS coil considering inhomogeneous Ic distribution of HTS tape

  • Jin, Hongwoo;Lee, Jiho;Lee, Woo Seung;Ko, Tae Kuk
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제17권2호
    • /
    • pp.41-44
    • /
    • 2015
  • Critical current of high-temperature superconducting (HTS) coil is influenced by its own self magnetic field. Direction and density distribution of the magnetic field around the coil are fixed after the shape of the coil is decided. If the entire part of the HTS tape has homogeneous $I_c$ distribution characteristic, quench would be initiated in fixed location on the coil. However, the actual HTS tape has inhomogeneous $I_c$ distribution along the length. If the $I_c$ distribution of the HTS tape is known, we can expect the spot within the HTS coil that has the highest probability to initiate the quench. In this paper, $I_c$ distribution within the HTS coil under self-field effect is simulated by MATLAB. In the simulation procedure, $I_c$ distribution of the entire part of the HTS tape is assume d to follow Gaussian-distribution by central limit theorem. The HTS coil model is divided into several segments, and the critical current of each segment is calculated based on the-generalized Kim model. Single pancake model is simulated and self-field of HTS coil is calculated by Biot-Savart's law. As a result of simulation, quench-initiating spot in the actual HTS coil can be predicted statistically. And that statistical analysis can help detect or protect the quench of the HTS coil.

A simulation-based design study of superconducting zonal shim coil for a 9.4 T whole-body MRI magnet

  • Kim, Geonyoung;Choi, Kibum;Park, Jeonghwan;Bong, Uijong;Bang, Jeseok;Hahn, Seungyong
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제22권1호
    • /
    • pp.12-16
    • /
    • 2020
  • As high homogeneity in magnetic field is required to increase the resolution of MRI magnets, various shimming methods have been researched. Using one of them, the design of the superconducting active zonal shim coil for MRI magnets is discussed in this paper. The magnetic field of the MRI magnet is expressed as the sum of spherical harmonic terms, and the optimized current density of shim coils capable of removing higher-order terms is calculated by the Tikhonov regularization method. To investigate all potential designs derived from calculated current density, 4 sweeping parameters are selected: (1) axial length of shim coil zone; (2) radius of shim coils; (3) exact axial position of shim coils; and (4) operating current. After adequate designs are determined with constraints of critical current margin and homogeneity criterion, the total wire length required for each is calculated and the design with a minimum of them is chosen. Using the superconducting wire length of 9.77 km, the field homogeneity over 50 cm DSV is improved from 24 ppm to 1.87 ppm in the case study for 9.4 T whole-body MRI shimming. Finally, the results are compared with the finite element method (FEM) simulation results to validate the feasibility and accuracy of the design.

차동형 탐지코일 마그네토미터 제작 (Construction of Differential Type Search Coil Magnetometer)

  • 김종호;손대락
    • 한국자기학회지
    • /
    • 제20권5호
    • /
    • pp.178-181
    • /
    • 2010
  • 탐지코일 마그네토미터는 고감도의 교류자기장 측정용으로 많이 사용되어 왔다. 본 연구에서는 센서코어의 자기소거인자를 감소시키고, 센서의 S/N ratio를 증가시키기 위하여 코어를 2개로 분리하고 각각의 코어에 코일을 권선하였으며, 코일의 연결은 차동형이 되게 하였다. 제작된 탐지코일 마그네토미터의 선형도는 0.03 % 이였으며, 감도가 9.3 mV/nT이고, 분해능은 1 Hz에서 20 pT 정도였다.

Development of TEM Coil for Animal Experiments at 3T MRI System

  • Chu, Myung-Ja;Choe, Bo-Young;Kim, Kyung-Nam;Chung, Sung-Taek;Oh, Chang-Hyun;Lee, Hyoung-Koo;Suh, Tae-Suk
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2002년도 Proceedings
    • /
    • pp.365-366
    • /
    • 2002
  • A novel TEM resonator coil was developed for the imaging of small animals. The functional elements of the TEM resonator were 8 inner conductors, distributed in a cylindrical pattern and connected at the ends with capacitors to the cylindrical outer shield. The TEM resonator coil with cavity elements was robust to the surrounding influences due to the self-shielding structure. The TEM resonator coil with high Q factor could provide high quality MR images at 3.0T MRI system. Also, the TEM resonator coil has an advantage for a fine tune with length adjustment of each cavity elements. Thus, The TEM resonator coil at 3.0T, even higher field could be used in the research studies.

  • PDF

고온 초전도 선재를 이용한 200 kJ SMES 코일의 설계 (Design of 200 kJ SMES Coil with HTS Wires)

  • 김지훈;한승용;임창환;김재광;정현교;한송엽
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2001년도 학술대회 논문집
    • /
    • pp.57-60
    • /
    • 2001
  • In this paper, a design scheme of SMES coil with HTS wire(BSCCO 2223) for least stray field and conductor consumption is presented. Three types of coils (solenoid, multiple solenoid, and modular toroid) have been considered. Shape and size of the coil was decided by line element method with evolution strategy and confirmed with Finite Element Method. Modular toroid displayed least stray field with given conductor length. The goal of the study is to establish designing technology of a HTS coil for SMES which works in relatively high magnetic field.

  • PDF

근거리 전송에 적합한 가이딩 코일의 파라미터 (Parameters of a guiding coil for wireless power transfer)

  • 우대웅;김재희;이동현;박경호;박위상
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2008년도 하계종합학술대회
    • /
    • pp.345-346
    • /
    • 2008
  • We analyzed the structural parameters of a guiding coil and a feeding loop for wireless power transfer in mid-range. The length, diameter, and number of turns of the guiding coil are the major factors to determine the resonant frequency. The separation distance between the coil and the loop also affects the power transfer ratio. This scheme has a greater transmission efficiency than using dipoles.

  • PDF