• Title/Summary/Keyword: Coil Spring Design

Search Result 80, Processing Time 0.026 seconds

Design and Fabrication of a Low Frequency Vibration Driven High-Efficiency Electromagnetic Energy Harvester (저 주파수용 FR-4 스프링 기반 고효율 진동형 전자기식 에너지 하베스터의 설계 및 제작)

  • Lee, Byung-Chul;Chung, Gwiy-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.298-302
    • /
    • 2012
  • This paper describes the design and fabrication of a low frequency vibration driven high-efficiency electromagnetic energy harvester based on FR(Flame Resistance)-4 spring which converts mechanical energy into useful electrical power. The fabricated generator consists of a vertically polarized NdFeB permanent magnet attached to the center of spring and a planar type copper coil which has higher efficiency compare with cylindrical type coil. ANSYS finite analysis and Matlab were used to determine the resonance frequency and output power. The generator is capable of producing up to 1.36 $V_{pp}$ at 9 Hz, which has the maximum power of 639 ${\mu}W$ with a load resistance of $3.25k{\Omega}$.

A study on the Fracture of Coil Spring (파쇄기용 코일스프링의 파손에 관한 연구)

  • Jeong, Hyung-Sik;An, Se-Won;Lee, Jong-Hyung;Choi, Seong-Dae
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.9 no.1
    • /
    • pp.51-59
    • /
    • 2006
  • The study is diagnosis about fatigue failure phenomenon of heating coil spring (sup9) and heat treatment method that is used to crusher. Because more than 80~90% of damage announcement of breakdown of machine and construction is been caused in fatigue present state, fatigue failure became important leading person at design. Calculated design load is imposed repeatedly that fatigue breakdown is safe. Is phenomenon that change load is imposed in the construction continuously. Used coil spring applies heat 30minute by Quenching temperature $860^{\circ}C$ if see manufacturing process and temperature of gasoline of $50^{\circ}C$ keep after quench that know tempering a $460^{\circ}C$ 90minute a product be. If doto apply heat $950^{\circ}C$ material at rolling process historically before quenching, austenite formation clay pipe being done AGS(Austenite Grain Size) by 2.5~4 become. Apply heat quenching 30minute by $820^{\circ}C$ by improvement method and after quench that keep $50^{\circ}C$ in oil tempering if do $450^{\circ}C$, 90minute spring ideal formation sorbite formation of the river form and condition that satisfy most more than AGS 7 appeared. Also, we can secure authoritativeness through MT since shot peening processing.

  • PDF

A Study on the Optimal Design of Automotive Gas Spring (차량용 가스스프링의 최적설계에 관한 연구)

  • Lee, Choon Tae
    • Journal of Drive and Control
    • /
    • v.14 no.4
    • /
    • pp.45-50
    • /
    • 2017
  • The gas spring is a hydropneumatic adjusting element, consisting of a pressure tube, a piston rod, a piston and a connection fitting. The gas spring is filled with compressed nitrogen within the cylinder. The filling pressure acts on both sides of the piston and because of area difference it produces an extension force. Therefore, a gas spring is similar in function compare to mechanical coil spring. Conversely, optimization is a process of finding the best set of parameters to reach a goal while not violating certain constraints. The AMESim software provides NLPQL (Nonlinear Programming by Quadratic Lagrangian) and GA (genetic algorithm) for optimization. The NLPQL method builds a quadratic approximation to the Lagrange function and linear approximations to all output constraints at each iteration, starting with the identity matrix for the Hessian of the Lagrangian, and gradually updating it using the BFGS method. On each iteration, a quadratic programming problem is solved to find an improved design until the final convergence to the optimum design. In this study, we conducted optimization design of the gas spring reaction force with NLPQL.

High-Precision Direct-Operated Relief Valve with a Variable Elasticity Spring (변탄성 스프링을 이용한 고정밀 직동형 릴리프 밸브)

  • Kim, SungDong
    • Journal of Drive and Control
    • /
    • v.17 no.4
    • /
    • pp.87-96
    • /
    • 2020
  • In this study, a variable elasticity spring was applied to improve the pressure control precision of conventional relief valves. The equilibrium equation of the forces acting on the valve poppet was derived; it is demonstrated that matching the elastic rate of the pressure-adjusting coil spring to the equivalent elastic rate of the flow force improved the pressure override. The procedures that were used to design the variable elasticity spring are presented, and some applications of the variable elasticity spring are also introduced. Computer simulations were used to analyze three cases: a poppet-closed flow force structure, a poppet-open flow force structure with a constant elasticity spring, and a structure containing a variable elasticity spring. It is confirmed that the pressure control precision of the relief valve can be significantly improved upon by applying a variable elasticity spring to the poppet-open flow force structure.

Comparative studies on numerical optimal design techniques (수치해석에 의한 최적화 설계 기법의 비교 연구)

  • 조선휘;박종근
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.4 no.2
    • /
    • pp.79-85
    • /
    • 1982
  • Computer codes on two numerical optimization methods-Sequentially Unconstrained Minimization Technique (SUMT) and Gradient Projection Method-are constructed and tested with several test problems. Design formulation of tension - compression coil spring is set up and the solution is obtained. Consequently, the feature, the advantage and the limitation of these methods, made clear through the tests, are discussed.

  • PDF

RBDO of Coil Spring Considering Transversal Direction Mode Tracking (횡방향 모드추적을 고려한 코일스프링의 신뢰성기반 최적설계)

  • Lee, Jin Min;Jang, Junyong;Lee, Tae Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.6
    • /
    • pp.821-826
    • /
    • 2013
  • When the values of design variables change, mode switching can often occur. If the mode of interest is not tracked, the frequencies and modes for design optimization may be miscalculated owing to modes that differ from the intended ones. Thus, mode tracking must be employed to identify the frequencies and modes of interest whenever the values of design variables change during optimization. Furthermore, reliability-based design optimization (RBDO) must be performed for design problems with design variables containing uncertainty. In this research, we perform RBDO considering the mode tracking of a compressive coil spring, i.e., a component of the joint spring that supports a compressor, with design variables containing uncertainty by using only kriging metamodels based on multiple responses approach (MRA) without existing mode tracking methods. The reliability analyses for RBDO are employed using kriging metamodel-based Monte Carlo simulation.

Design and Fabrication of Soft Deformable Wheel Robot using Composite Materials and Shape Memory Alloy Coil Spring Actuators (복합 재료와 형상 기억 합금 코일 스프링 구동기를 이용한 유연하게 변형 가능한 바퀴 로봇의 설계 및 제작)

  • Koh, Je-Sung;Lee, Dae-Young;Kim, Ji-Suk;Kim, Seung-Won;Cho, Kyu-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.1
    • /
    • pp.47-52
    • /
    • 2013
  • In order to operate a search and rescue robot in hazardous area, the robot requires high mobility and adaptable locomotion for moving in unpredictable environments. In this paper, we propose the deformable soft wheel robot that can produce three kinds of driving modes; caterpillar driving mode, normal wheel driving mode, legged-wheel driving mode. The robot changes its driving mode as it faces the various obstacles such as a small gap, stairs etc. Soft film and composite materials are used for fabrication of deformable wheel structure and Shape Memory Alloy (SMA) coil spring actuators are attached on the structure as an artificial muscle. Film lamination and an composite manufacturing process is introduced and the robot design is required to be modified and compromised to applying the manufacturing process. The prototype is developed and tested for verifying feasibility of the deformable wheel locomotion.

Design and Analyses of Vibration Driven Electromagnetic Energy Harvester with High Power Generation at Low Frequency (저주파수 진동형 전자기식 마이크로 발전기의 설계 및 해석)

  • Lee, Byung-Chul;Chung, Gwiy-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.102-106
    • /
    • 2011
  • This paper presents a design and analysis of an electromagnetic micro generator which can convert low frequency vibration energy to electrical power. The design aspects of the micro generator comprised planar spring, Cu coil and a permanent magnet(NdFeB). Threetype spring designs and four materials(Parylene, FR-4, Cu and Si) were compared to find resonance frequency. It was found that the resonance frequency will be changed according to the spring shape and material. Mechanical and magnetic parameters had been adjusted to optimize the output power through a comprehensive theoretical study.

Shaking Table Test for Analysis of Effect on Vibration Control of the Piping System by Steel Coil Damper (강재 코일 댐퍼의 배관시스템 진동제어 효과 분석을 위한 진동대시험)

  • Choi, Song Yi;So, Gi Hwan;Cho, Sung Gook
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.1
    • /
    • pp.39-48
    • /
    • 2022
  • Many piping systems installed in the power plant are directly related to the safety and operation of the plant. Various dampers have been applied to the piping system to reduce the damage caused by earthquakes. In order to reduce the vibration of the piping system, this study developed a steel coil damper (SCD) with a straightforward structure but excellent damping performance. SCD reduces the vibration of the objective structure by hysteretic damping. The new SCD damper can be applied to high-temperature environments since it consists of steel members. The paper introduces a design method for the elastoplastic coil spring, which is the critical element of SCD. The practical applicability of the design procedure was validated by comparing the nonlinear force-displacement curves calculated by design equations with the results obtained from nonlinear finite element analysis and repeated loading test. It was found that the designed SCD's have a damping ratio higher than 25%. In addition, this study performed a set of seismic tests using a shaking table with an existing piping system to verify the vibration control capacity on the piping system by SCD. Test results prove that the SCD can effectively control the displacement vibration of the piping system up to 80%.

Plate Spring Design of a Micro Actuator Using Topology-parameter Optimization (위상-치수 최적화에 의한 마이크로 구동기 판 스프링의 설계)

  • Lee, Jong-Jin;Lee, Ho-Cheol;Yoo, Jeong-Hoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.12
    • /
    • pp.1246-1253
    • /
    • 2007
  • The recent issue of optical pickup actuators is to apply optical storage devices to mobile devices such as a cellular phone and PDA. It requires actuators to become smaller than conventional types. As the size becomes smaller, the magnetic force is reduced and the assembly of optical pickup actuators becomes more difficult. In addition, its dynamic characteristics are changed. In this paper, methods to improve magnetic forces and dynamic characteristics are suggested and the optimal result of the plate spring design is obtained. A diamond shape magnet and the fine pattern coil (FPC) are used to improve magnetic forces and damping elements are attached to decrease the peak magnitude of the mode instead of using structural damping, mostly for the purpose of improving the accuracy of the finite element simulation. To get more stable dynamic characteristics than conventional ones, a plate spring is applied to the optical pickup actuator and it is optimized with topology and parameter optimization to obtain the concept and the detail design, respectively.