• 제목/요약/키워드: Cohn-Jordan extension

검색결과 2건 처리시간 0.018초

THE COHN-JORDAN EXTENSION AND SKEW MONOID RINGS OVER A QUASI-BAER RING

  • HASHEMI EBRAHIM
    • 대한수학회논문집
    • /
    • 제21권1호
    • /
    • pp.1-9
    • /
    • 2006
  • A ring R is called (left principally) quasi-Baer if the left annihilator of every (principal) left ideal of R is generated by an idempotent. Let R be a ring, G be an ordered monoid acting on R by $\beta$ and R be G-compatible. It is shown that R is (left principally) quasi-Baer if and only if skew monoid ring $R_{\beta}[G]$ is (left principally) quasi-Baer. If G is an abelian monoid, then R is (left principally) quasi-Baer if and only if the Cohn-Jordan extension $A(R,\;\beta)$ is (left principally) quasi-Baer if and only if left Ore quotient ring $G^{-1}R_{\beta}[G]$ is (left principally) quasi-Baer.

RING ENDOMORPHISMS WITH THE REVERSIBLE CONDITION

  • Baser, Muhittin;Kaynarca, Fatma;Kwak, Tai-Keun
    • 대한수학회논문집
    • /
    • 제25권3호
    • /
    • pp.349-364
    • /
    • 2010
  • P. M. Cohn called a ring R reversible if whenever ab = 0, then ba = 0 for a, $b\;{\in}\;R$. Commutative rings and reduced rings are reversible. In this paper, we extend the reversible condition of a ring as follows: Let R be a ring and $\alpha$ an endomorphism of R, we say that R is right (resp., left) $\alpha$-shifting if whenever $a{\alpha}(b)\;=\;0$ (resp., $\alpha{a)b\;=\;0$) for a, $b\;{\in}\;R$, $b{\alpha}{a)\;=\;0$ (resp., $\alpha(b)a\;=\;0$); and the ring R is called $\alpha$-shifting if it is both left and right $\alpha$-shifting. We investigate characterizations of $\alpha$-shifting rings and their related properties, including the trivial extension, Jordan extension and Dorroh extension. In particular, it is shown that for an automorphism $\alpha$ of a ring R, R is right (resp., left) $\alpha$-shifting if and only if Q(R) is right (resp., left) $\bar{\alpha}$-shifting, whenever there exists the classical right quotient ring Q(R) of R.