• Title/Summary/Keyword: Cohesive soil rate

Search Result 23, Processing Time 0.025 seconds

Erosion Characteristics of Kaolinite with respect to Contents of Silt (실트함량에 따른 카올리나이트의 침식특성 평가)

  • Lee, Ju-Hyung;Park, Jae-Hyun;Chung, Mun-Kyung;Kwak, Ki-Seok
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.593-596
    • /
    • 2008
  • The scour phenomenon involves the erosive potential of flowing water and the relative ability of the soil to resist erosion. The scour phenomenon in cohesive soils is much different from that in non-cohesive soils. Granular soils resist erosion by their buoyant weight and the friction between the particles. The soil particles are dislodged individually from the bed under the action of the eroding fluid. Scour in cohesive soils is much slower and more dependent on soil properties than that in non-cohesive soils. Therefore the analysis models for estimating erosion characteristics of cohesive soils should consider not only flowing water but also the relative ability of the soil to resist erosion. In this study, erosion characteristics for the clay-silt mixed soil will be analyzed as a fundamental study for development of bridge scour analysis and design system considering scour resistance capacity of a soil. For this analysis, the relationship between scour characteristics and soil properties was evaluated through scour rate test with Kaolinite samples remolded using various loading and contents of silt.

  • PDF

Engineering behavior of expansive soils treated with rice husk ash

  • Aziz, Mubashir;Saleem, Masood;Irfan, Muhammad
    • Geomechanics and Engineering
    • /
    • v.8 no.2
    • /
    • pp.173-186
    • /
    • 2015
  • The rapid urbanization in Pakistan is creating a shortage of sustainable construction sites with good soil conditions. Attempts have been made to use rice husk ash (RHA) in concrete industry of Pakistan, however, limited literature is available on its potential to improve local soils. This paper presents an experimental study on engineering properties of low and high plastic cohesive soils blended with 0-20% RHA by dry weight of soil. The decrease in plasticity index and shrinkage ratio indicates a reduction in swell potential of RHA treated cohesive soils which is beneficial for problems related to placing pavements and footings on such soils. It is also observed that the increased formation of pozzolanic products within the pore spaces of soil from physicochemical changes transforms RHA treated soils to a compact mass which decreases both total settlement and rate of settlement. A notable increase in friction angle with increase in RHA up to 16% was also observed in direct shear tests. It is concluded that RHA treatment is a cost-effective and sustainable alternate to deal with problematic local cohesive soils in agro-based developing countries like Pakistan.

Strain Rate-dependent Model for Anisotropic Cohesive Soils (비등방성 점성토에 있어서 변형률속도 의존적 구성모델)

  • Kim, Dae-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.3
    • /
    • pp.15-22
    • /
    • 2003
  • The appropriate description of the stress-anisotropy and time-dependent behavior of cohesive soils is very important in representing the real soil behavior. In this study, two constitutive relations have been incorporated based on the generalized viscous theory: one is the plastic constitutive relation adopted to capture the stress-anisotropy with a few model parameters; the other is the rate-dependent constitutive relation adopted to describe the strain rate-dependent behavior, an important time-dependent behavior in cohesive soils. The incorporated and proposed constitutive model has relatively a few model parameters and their values need not to be re-evaluated at different strain rates. The proposed model has been verified and investigated with the anisotropic triaxial test results obtained by using the artificial homogeneous specimens.

5-SRICOS Method : Prediction of Scour Depth Around Bridge Piers in Cohesive Soils (S-SRICOS 방법 : 점성토지반의 교각세굴깊이 예측)

  • 곽기석
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.2
    • /
    • pp.13-21
    • /
    • 2002
  • A new method called S-SRICOS is proposed to predict the local scour depth around bridge piers. The S-SRICOS method is a simplified version of the SRICOS method which was developed to predict the scour depth versus time curve around bridge piers. The SRICOS method which considers the time effect based on the soil properties and the hydraulic parameters can handle a multi-flood hydrograph and multi-layer soil systems with the SRICOS program. An attempt was made to simplify the method to the point where only hand calculations would be required. The concept of the equivalent time was developed leer this purpose. The S-SROICOS method requires only 4 parameters such as pier width, design bridge life, design velocity corresponding to the design bridge life, and initial scour rate of the soil. The S-SRICOS method was verified against 55 cases of the scour depth results using the SRICOS method.

Development of equivalent linear algorithm procedure that accounts for the loading frequency dependent soil behavior (하중의 주파수에 지배받는 흙의 동적거동을 고려하는 등가선형해석방법 개발)

  • Park, Du-Hee;Lee, Hyun-Woo;Lee, Seung-Chan;Kim, Jae-Yeon;Chun, Byung-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.617-624
    • /
    • 2006
  • Site response analysis is widely used in estimating local seismic site effects. The soil behavior in the analysis is assumed to be Independent of the rate of the seismic loading laboratory results, however, indicate that cohesive soil behavior is greatly influenced by the rate of loading. A new equivalent linear analysis method is developed that accounts for the rate-dependence of soil behavior and used to perform a series of one dimensional site response analyses. Results indicate that while rate-dependent shear modulus has limited influence on computed site response, rate-dependent soil damping greatly filters out high frequency components of the ground motion and thus results in lower response.

  • PDF

An Experimental Research About Settling and Consolidation Characteristic of Dredged Soil in West Coast (서해안 준설토의 침강압밀특성에 관한 실험적 연구)

  • Lee, Seung-Ho;Lee, Jeong-Hak
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.5
    • /
    • pp.29-36
    • /
    • 2011
  • In this study, settling experiment was performed about cohesive and sandy soils among representative sample expected to dredge and dump for analysis of settling and consolidation characteristic. The analysis showed the definite difference between cohesive soils and sandy soils of relationships with settling and consolidation coefficient, a water content, interfacial heights. But directly after a dredged reclamation, prediction results about a initial volume change showed that cohesive soil of a water content change was decreased rapidly as time goes by, but sandy soils made no difference in a water content change. Results were compared and analyzed with the settling and consolidation coefficient and a initial settling velocity by real soil amounts for a feasibility check about test conditions applied to these experiment: we judge that test conditions are appropriate, each material by such these analyses suggests the scope of settling and consolidation coefficient, average and the representative relational formula.

Study on Cone Penetration Rate and Anisotropy in Cohesive Soils (점성토에 있어서 지반의 비등방성을 고려한 콘 관입속도에 관한 연구)

  • Kim, Dae-Kyu;Lee, Woo-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.559-566
    • /
    • 2000
  • 본 연구에서는 비등방성 응력조건 하에서 콘 관입속도가 콘 관입시험 결과에 미치는 영향을 연구하기 위하여 유한요소해석 및 Calibration Chamber를 이용한 Miniature Piezocone의 관입시험이 수행되었으며 그 결과를 비교 분석하였다. 비등방성을 고려하기 위하여 Anisotropic Soil Model이 유한요소해석에 이용되었으며 LSU/CALCHAS(Louisiana State University Calibration Chamber System)가 Miniature Piezocone의 관입시험에 이용되었다. 콘 관입속도의 영향이외에도 OCR 및 필터위치의 영향을 고찰하였다.

  • PDF

A Study on the Strength Characteristics of Lime-Soil Mixtures. (석회혼합토의 강도특성에 관한 연구)

  • 조성정
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.22 no.3
    • /
    • pp.46-59
    • /
    • 1980
  • This study was conducted to obtain the most effective distribution of grain size and the optimum lime content for lime-soil stabilization. To achieve the aim, the change of consistency, the characteristics of compaction and unconfined compressive strength were tested by adding of 0, 4, 6, 8, 10 and 12 percent lime by weight for all soils adjusted by given ratios of sand to clay. The results obtained were as follows; 1. There was a tendency that the plasticity index of lime-soil mixture was decreased by increasing the amount of lime, whereas the liquid limit was varied irregularly and the plastic limit was increased. 2. With the addition of more lime, the optimum moisture content of lime-soil mixture was increased, and the maximum dry density was decreased. 3. The optimum lime content of lime-soil mixture was varied from soil to soil, and the less amount of small grain size, the less value of optimum lime content. 4. The optimum distribution of grain size for lime-soil mixture was in the soil, having the ratio of about 60 percent of cohesive clay and about 40 percent of sand by weight. 5. In the soil having fine grain size, the effect of curing appeared for long periods of time, whereas the increasing rate of unconfined compressive strength was great on the soil of coarse grain size in the earlier stage of curing period.

  • PDF

A Case Study of Pier Scour Considering Soil Erodibility (지반의 침식특성을 이용한 교각세굴 사례 연구)

  • 곽기석;정문경;이주형;박재현
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.3
    • /
    • pp.67-74
    • /
    • 2004
  • A case study was performed to verify the applicability of existing formulae for predicting bridge scour in cases where its piers are founded in fine-grained soils. The object of study was the Kanghwa Choji Bridge area where the streambed consists of mainly clayey soil. Site investigation included: direct measurement of scour depths around piers using an ultrasonic probe; and collection of undisturbed soil samples which were later used to determine geotechnical properties and scour rate under different stream velocities. Scour depth prediction was made by employing several conventional methods and compared with the measured value. All methods, not taking soil's intrinsic property against erosion into consideration, overestimated scour depth by a factor of 3.6 to 6.5. On the other hand, the SRICOS method yielded a reasonably acceptable overestimation by a factor of 1.7.

A Study on The Unconfined Compression Test Method of Cohesive Soil (점성토(粘性土)의 일축압축강도(一軸壓縮强度) 시험방법(試驗方法)에 대(對)한 고찰(考察))

  • Kang, Yea Mook;Lee, Sei Jin;Lee, Dal Won
    • Korean Journal of Agricultural Science
    • /
    • v.17 no.2
    • /
    • pp.95-101
    • /
    • 1990
  • In order to investigate the influence of unconfined compression strength on undisturbed cohesive soil, the unconfined compression test were carried out on the basis of various size of specimen and compression rate. The result of these experiments were summarized as follows. 1. As the section area of specimen increased. the unconfined compression strength was decreased. 2. As the ratio of height and diameter of specimen increased, the unconfined compression strength was decreased. 3. The unconfined compression strength was increased by 3%, but in values over the 3% was decrease. 4. As the compression rate increased. the modulus of deformation was increased.

  • PDF