• 제목/요약/키워드: Cohesive matrix

검색결과 31건 처리시간 0.02초

2-D meso-scale complex fracture modeling of concrete with embedded cohesive elements

  • Shen, Mingyan;Shi, Zheng;Zhao, Chao;Zhong, Xingu;Liu, Bo;Shu, Xiaojuan
    • Computers and Concrete
    • /
    • 제24권3호
    • /
    • pp.207-222
    • /
    • 2019
  • This paper has presented an effective and accurate meso-scale finite element model for simulating the fracture process of concrete under compression-shear loading. In the proposed model, concrete is parted into four important phases: aggregates, cement matrix, interfacial transition zone (ITZ), and the initial defects. Aggregate particles were modelled as randomly distributed polygons with a varying size according to the sieve curve developed by Fuller and Thompson. With regard to initial defects, only voids are considered. Cohesive elements with zero thickness are inserted into the initial mesh of cement matrix and along the interface between aggregate and cement matrix to simulate the cracking process of concrete. The constitutive model provided by ABAQUS is modified based on Wang's experiment and used to describe the failure behaviour of cohesive elements. User defined programs for aggregate delivery, cohesive element insertion and modified facture constitutive model are developed based on Python language, and embedded into the commercial FEM package ABAQUS. The effectiveness and accuracy of the proposed model are firstly identified by comparing the numerical results with the experimental ones, and then it is used to investigate the effect of meso-structure on the macro behavior of concrete. The shear strength of concrete under different pressures is also involved in this study, which could provide a reference for the macroscopic simulation of concrete component under shear force.

Cohesive modeling of dynamic fracture in reinforced concrete

  • Yu, Rena C.;Zhang, Xiaoxin;Ruiz, Gonzalo
    • Computers and Concrete
    • /
    • 제5권4호
    • /
    • pp.389-400
    • /
    • 2008
  • In this work we simulate explicitly the dynamic fracture propagation in reinforced concrete beams. In particular, adopting cohesive theories of fracture with the direct simulation of fracture and fragmentation, we represent the concrete matrix, the steel re-bars and the interface between the two materials explicitly. Therefore the crack nucleation within the concrete matrix, through and along the re-bars, the deterioration of the concrete-steel interface are modeled explicitly. The numerical simulations are validated against experiments of three-point-bend beams loaded dynamically under various strain rates. By extracting the crack-tip positions and the crack mouth opening displacement history, a two-stage crack propagation, marked by the attainment of the peak load, is observed. The first stage corresponds to the stable crack advance, the second one, the unstable collapse of the beam.

Simulation of Material Properties of Amorphous Carbon Nitride with Non-uniform Nitrogen Distribution

  • Lu, Y.F.;He, Z.F.
    • Transactions on Electrical and Electronic Materials
    • /
    • 제2권3호
    • /
    • pp.1-6
    • /
    • 2001
  • A simulation method is proposed to study the amorphous structure of carbon nitride. The material properties of a non-uniform nitrogen distribution in an amorphous CN matrix can be studied. The cohesive energy of a group of randomly generated atoms can be minimized to find the relative positions of atoms. From the calculated configuration of atoms, many properties of amorphous carbon nitride can be calculated such as bulk modulus, P-V curve, sp$^3$/sp$^2$ ratio of carbon, and vibrational spectra. The calculation shows that the cohesive energy of non-uniform nitrogen distribution is lower than that of a uniform distribution. This may suggest that the regular structure of carbon nitride can at most be metastable. It is not easy to incorporate nitrogen atoms into a carbon matrix.

  • PDF

A cohesive matrix in a conjecture on permanents

  • Hong, Sung-Min;Jun, Young-Bae;Kim, Seon-Jeons;Song, Seok-Zun
    • 대한수학회보
    • /
    • 제33권1호
    • /
    • pp.127-133
    • /
    • 1996
  • Let $\Omega_n$ be the polyhedron of $n \times n$ doubly stochastic matrices, that is, nonnegative matrices whose row and column sums are all equal to 1. The permanent of a $n \times n$ matrix $A = [a_{ij}]$ is defined by $$ per(A) = \sum_{\sigma}^ a_{1\sigma(a)} \cdots a_{n\sigma(n)} $$ where $\sigma$ runs over all permutations of ${1, 2, \ldots, n}$.

  • PDF

MINIMUM PERMANENTS ON DOUBLY STOCHASTIC MATRICES WITH PRESCRIBED ZEROS

  • Song, Seok-Zun
    • 호남수학학술지
    • /
    • 제35권2호
    • /
    • pp.211-223
    • /
    • 2013
  • We consider permanent function on the faces of the polytope of certain doubly stochastic matrices, whose nonzero entries coincide with those of fully indecomposable square (0, 1)-matrices containing identity submatrix. We determine the minimum permanents and minimizing matrices on the given faces of the polytope using the contraction method.

응집영역 모델링 기법을 사용한 노치가 있는 적층복합재료의 파괴해석 (Fracture Analysis of Notched Laminated Composites using Cohesive Zone Modeling)

  • 우경식;더글라스 케언스
    • Composites Research
    • /
    • 제30권2호
    • /
    • pp.149-157
    • /
    • 2017
  • 본 논문에서는 응집영역 모델링 기법을 사용하여 노치가 있는 적층복합재료의 파괴거동을 연구하였다. 먼저 노치가 있는 적층복합재료 시편형상에 대해 일반 3차원 고체요소로 모델링 한 후 요소들 사이에 섬유파괴, 기지파괴 및 층간분리 파괴를 담당하는 응집요소를 삽입하여 유한요소 메쉬를 제작하였다. 다음으로 일축인장 시험을 모사하는 하중 및 경계조건을 가하여 점진적 파괴해석을 수행하고 해석결과를 참고문헌의 실험결과와 비교하여 해석의 타당성을 검증하였다. 수치해석 결과로부터 노치가 있는 적층복합재료 인장시편의 파괴시작 및 진전거동을 분석하였으며 파괴모드의 진전을 체계적으로 조사하였다.

Modeling of unilateral effect in brittle materials by a mesoscopic scale approach

  • Pituba, Jose J.C.;Neto, Eduardo A. Souza
    • Computers and Concrete
    • /
    • 제15권5호
    • /
    • pp.735-758
    • /
    • 2015
  • This work deals with unilateral effect of quasi-brittle materials, such as concrete. For this propose, a two-dimensional meso-scale model is presented. The material is considered as a three-phase material consisting of interface zone, matrix and inclusions - each constituent modeled by an appropriate constitutive model. The Representative Volume Element (RVE) consists of inclusions idealized as circular shapes randomly placed into the specimen. The interface zone is modeled by means of cohesive contact finite elements developed here in order to capture the effects of phase debonding and interface crack closure/opening. As an initial approximation, the inclusion is modeled as linear elastic as well as the matrix. Our main goal here is to show a computational homogenization-based approach as an alternative to complex macroscopic constitutive models for the mechanical behavior of the quasi-brittle materials using a finite element procedure within a purely kinematical multi-scale framework. A set of numerical examples, involving the microcracking processes, is provided. It illustrates the performance of the proposed model. In summary, the proposed homogenization-based model is found to be a suitable tool for the identification of macroscopic mechanical behavior of quasi-brittle materials dealing with unilateral effect.

The Lago Sofia Conglomerate : Debris Flow to Hyperconcentrated Flow Deposits in a Cretaceous Submarine Channel, Southern Chile

  • Choe, Moon-Young;Sohn, Young-Kwan;Jo, Hyung-Rae;Kim, Yea-Dong
    • Ocean and Polar Research
    • /
    • 제24권3호
    • /
    • pp.289-300
    • /
    • 2002
  • The Lago Sofia conglomerates encased in the Cretaceous Cerro Toro Formation, southern Chile, represent a gigantic submarine channel system developed along a foredeep trough. The channel system consists of several tributaries along the trough margin and a trunk channel along the trough axis. Voluminous debris flows were generated ubiquitously along the tract of the submarine channel mainly by the failure of nearby channel banks or slopes. The flows transformed immediately into multiphase flows and resulted in very thick-bedded mass-flow deposits with a peculiar structure sequence. The mass-flow deposits commonly overlie fluted or grooved surfaces and consist of a lower division of clast-supported and imbricated pebble-cobble conglomerate with common basal inverse grading, and an upper division of clast- to matrix-supported and disorganized pebble conglomerate or pebbly mudstone with abundant intraformational clasts. The structure sequence suggests a temporal succession of a turbidity current, a bipartite hyperconcentrapted flow with active clast collisions near the flow base, and a cohesive debris flow probably with a rigid plug. The multiphase flow is interpreted to have resulted from transformation of clast-rich but cohesive debris flows. Cohesive debris flows appear to transform more easily into dilute flow types in subaqueous environments because they are apt to hydroplane. This is in contrast to the flow transitions in subaerial environments where noncohesive debris flows are dominant and difficult to hydroplane.

오픈 홀 인장 복합 재료 적층판에서 층간 및 내부 손상에 대한 점진적 손상 모델링 (Progressive Damage Modeling of Inter and Intra Laminar Damages in Open Hole Tensile Composite Laminates)

  • 살만 칼리드;김흥수
    • 한국전산구조공학회논문집
    • /
    • 제32권4호
    • /
    • pp.233-240
    • /
    • 2019
  • 인장 강도는 복합 재료를 설계하기 위한 필수 변수이므로 개방 홀 인장 시험을 통해 복합 재료의 인장 강도를 측정한다. 그러나 인장 시험을 올바르게 모델링하는 것은 섬유와 매트릭스 손상, 층간분리 및 섬유와 매트릭스 사이의 손상 같은 다양한 손상을 수반하기 때문에 매우 어려운 과제다. 따라서 섬유와 매트릭스 사이의 면내 파괴 및 층간분리를 평가하기 위해 본 연구에서는 점진적 손상 모델을 개발하였다. 하신 손상 모델과 응집 영역 접근법을 층과 층간분리를 모델링하는데 사용하였다. 현재 모델의 결과를 이전에 발표된 실험 및 수치 결과와 비교하여 검증하였다. 이를 통해 유한요소해석에서 층간분리를 무시하면 인장 강도가 과대평가 된다는 것을 확인할 수 있었다.

Synergistic bond properties of new steel fibers with rounded-end from carbon nanotubes reinforced ultra-high performance concrete matrix

  • Nguyen Dinh Trung;Dinh Tran Ngoc Huy;Dmitry Olegovich Bokov;Maria Jade Catalan Opulencia;Fahad Alsaikhan;Irfan Ahmad;Guljakhan Karlibaeva
    • Advances in nano research
    • /
    • 제14권4호
    • /
    • pp.363-373
    • /
    • 2023
  • A novel type of steel fiber with a rounded-end shape is presented to improve the bonding behavior of fibers with Carbon Nanotubes (CNT)-reinforced Ultra-High Performance Concrete (UHPC) matrix. For this purpose, by performing a parametric study and using the nonlinear finite element method, the impact of geometric characteristics of the fiber end on its bonding behavior with UHPC has been studied. The cohesive zone model investigates the interface between the fibers and the cement matrix. The mechanical properties of the cohesive zone model are determined by calibrating the finite element results and the experimental fiber pull-out test. Also, the results are evaluated with the straight steel fibers outcomes. Using the novel presented fibers, the bond strength has significantly improved compared to the straight steel fibers. The new proposed fibers increase bond strength by 1.1 times for the same diameter of fibers. By creating fillet at the contact area between the rounded end and the fiber, bond strength is significantly improved, the maximum fiber capacity is reachable, and the pull-out occurs in the form of fracture and tearing of the fibers, which is the most desirable bonding mode for fibers. This also improves the energy absorbed by the fibers and is 4.4 times more than the corresponding straight fibers.