A COHESIVE MATRIX IN A CONJECTURE ON PERMANENTS

SUNG-MIN HONG, YOUNG-BAE JUN, SEON-JEONG KIM AND SEOK-ZUN SONG

1. Introduction and Preliminaries

Let Ω_n be the polyhedron of $n \times n$ doubly stochastic matrices, that is, nonnegative matrices whose row and column sums are all equal to 1. The *permanent* of a $n \times n$ matrix $A = [a_{ij}]$ is defined by

$$per(A) = \sum_{\sigma} a_{1\sigma(1)} \cdots a_{n\sigma(n)}$$

where σ runs over all permutations of $\{1, 2, \dots, n\}$.

Let $D = [d_{ij}]$ be an $n \times n$ (0,1)-matrix, and let

$$\Omega(D) = \{ X = [x_{ij}] \in \Omega_n \mid x_{ij} = 0 \text{ whenever } d_{ij} = 0 \}.$$

Then $\Omega(D)$ is a face of Ω_n , and since it is compact, $\Omega(D)$ contains a minimizing matrix A such that $\operatorname{per}(A) \leq \operatorname{per}(X)$ for all $X \in \Omega(D)$.

Let R_n denote the $n \times n$ (0,1)-matrix with zero trace, and all offdiagonal entries equal to 1, and E_{ij} denote the $n \times n$ matrix whose (i,j)entry is 1, and whose other entries are all zero. Let $C_n = R_n + E_{11}$ and J_n be the $n \times n$ matrix with all entries equal to 1.

Brualdi [1] defined an $n \times n$ (0, 1)-matrix D to be *cohesive* if there is a matrix $A = [a_{ij}]$ in the interior of $\Omega(D)$ (that is, $a_{ij} \neq 0$ whenever $d_{ij} = 1$) for which

$$per(A) = \min\{per(X) \mid X \in \Omega(D)\},\$$

Received September 26, 1994.

¹⁹⁹¹ AMS Subject Classification: Primary 15A15.

Key words and phrases: Cohesive matrix, contraction.

Suported by the Basic Science Research Institute Program, Ministry of Education, 1994, Project No. BSRI-94-1406.

and he defined an $n \times n$ (0,1)-matrix D to be barycentric if

$$per(B(D)) = \min \{ per(X) \mid X \in \Omega(D) \}$$

where the barycenter b(D) of $\Omega(D)$ is given by

$$b(D) = \frac{1}{\operatorname{per}(D)} \sum_{P \le D} P,$$

where the summation extends over the set of all permutation matrices P with $P \leq D$ and per(D) is their number.

It is true that a (0,1)-matrix can be cohesive without being barycentric. Such an example was given in [7] by Song. In [1], Brualdi conjectured that C_n (defined above) would be a likely candidate for such an interesting example. Minc [6] gave a local minimizing matrix $X_n(\alpha)$ on $\Omega(C_n)$;

(1)
$$X_{n}(\alpha) = \begin{pmatrix} \beta & \alpha & \alpha & \dots & \alpha & \alpha \\ \alpha & 0 & \gamma & \dots & \gamma & \gamma \\ \alpha & \gamma & 0 & & \gamma & \gamma \\ \vdots & \vdots & & \ddots & & \vdots \\ \alpha & \gamma & \gamma & \dots & 0 & \gamma \\ \alpha & \gamma & \gamma & \dots & \gamma & 0 \end{pmatrix}$$

where $\alpha = \frac{\operatorname{per}(R_{n-1})}{d}$, $\beta = \frac{(n-2)\operatorname{per}(R_{n-2})}{d}$ and $\gamma = \frac{\operatorname{per}(C_n)}{d}$ with $d = \operatorname{per}(C_n) - \operatorname{per}(C_{n-1})$. And Song [8] proved directly that C_n is never barycentric for $n \geq 3$. But, no one did determine the minimum permaent and minimizing matrix on $\Omega(C_n)$ for $n \geq 4$. Moreover, it was not proved that C_n is cohesive for $n \geq 4$.

In this paper, we prove that C_4 is cohesive. The general case remains open.

Let A be an $n \times n$ nonnegative matrix. If column k of A contains exactly two nonzero entries, say in rows i and j, then the $(n-1)\times(n-1)$ matrix C(A) obtained from A by replacing row i with the sum of rows i and j and deleting row j and column k is called a *contraction* of A. If A has a row with exactly two nonzero entries, then $C(A^t)^t$ is also a contraction of A, where A^t is the transpose of A.

LEMMA 1 ([3]). Suppose $A \in \Omega_n$ is fully indecomposable and has a column (row) with exactly two positive entries. Then $\overline{C(\bar{A})}$ is fully indecomposable and $(n-1) \times (n-1)$ doubly stochastic, and

$$2per(A) \ge 2per(\bar{A}) = per(C(\bar{A})) \ge per(\bar{C}(\bar{A})),$$

where $A = \overline{(C(A))}$ is a minimizing matrix on the face $\Omega(A)$ (or $\Omega(C(\bar{A}))$), respectively) of Ω_n .

The following Lemma is a known result (See [3] or [7]).

LEMMA 2. If $A = [a_{ij}]$ is a minimizing matrix on $\Omega(C_n)$ then $per(A(i \mid j)) \ge per(A)$ for $a_{ij} = 0$ and $c_{ij} = 1$.

2. The cohesiveness of C₄

Egorychev [2] proved that $\frac{1}{n}J_n$ is the unique minimizing matrix on Ω_n . After that, determining the minimizing matrix and minimum permanent on $\Omega(R_n)$ is one of the famous problems on permanents. London and Minc [4] proved that $\frac{1}{3}R_4$ is the unique minimizing matrix on $\Omega(R_4)$. But the general case on $\Omega(R_n)$ remains open. We use this result in the proof of the cohesivness of C_4 .

THEOREM 3 ([4]). For any $A \in \Omega(R_4)$, $per(A) \ge per(\frac{1}{3}R_4) = \frac{1}{9}$. Equality holds only if $A = \frac{1}{3}R_4$.

THEOREM 4. The matrix C_4 is cohesive.

The proof follows from the Lemmas 5, 6 and 7.

LEMMA 5. If $A = [a_{ij}]$ is a minimizing matrix on $\Omega(C_4)$, then a_{11} is not zero.

Proof. Suppose that $a_{11} = 0$. Then A is contained in $\Omega(R_4)$. Thus

(2)
$$\operatorname{per}(A) \ge \operatorname{per}(\frac{1}{3}R_4) = \frac{1}{9}$$

Sung-Min Hong, Young-Bae Jun, Seon-Jeong Kim and Seok-Zun Song

by Theorem 3. Consider a likely candidate

$$X_4=rac{1}{8}egin{pmatrix} 2 & 2 & 2 & 2 \ 2 & 0 & 3 & 3 \ 2 & 3 & 0 & 3 \ 2 & 3 & 3 & 0 \end{pmatrix}$$

in (1) for a minimizing matrix on $\Omega(C_4)$. Then

(3)
$$per(X_4) = \frac{27}{256},$$

which is less than $\frac{1}{9}$. Hence A with $a_{11} = 0$ can not be a minimizing matrix by (2) and (3).

LEMMA 6. If $A = [a_{ij}]$ is a minimizing matrix on $\Omega(C_4)$, then a_{1j} and a_{j1} are not zero for j = 2, 3 and 4.

Proof. Assume that $a_{12} = 0$. Then a_{23} and a_{24} cannot be zero since A is fully indecomposable by Lemma 2. That is, the second column of A has only two nonzero entries. Now, consider the contraction C(A) of A on the second column;

$$C(A) = \begin{pmatrix} a_{11} & a_{13} & a_{14} \\ a_{21} & a_{23} & a_{24} \\ a_{31} + a_{41} & a_{43} & a_{34} \end{pmatrix}$$

Then C(A) is contained in $\Omega(J_3)$. Thus

(4)
$$\operatorname{per}(C(A)) \ge \operatorname{per}(\frac{1}{3}J_3) = \frac{2}{9}$$

by the van der Waerden-Egorychev Theorem [2]. And Lemma 2 implies that

(5)
$$2\operatorname{per}(A) \ge \operatorname{per}(C(A))$$

Since X_4 in (1) has $\frac{27}{256}$ as its permanent from (3), we have

$$per(A) \ge \frac{1}{9} > \frac{27}{256} = per(X_4)$$

by (4) and (5). Therefore A with $a_{12} = 0$ is not a minimizing matrix on $\Omega(C_4)$.

By the similar proof, we can show that a_{1j} is not zero for j=3,4. If a_{j1} is zero for j=2,3 and 4, then we can show that A is not a minimizing matrix on $\Omega(4)$ by the use of contraction on the jth row of A.

LEMMA 7. If $A = [a_{ij}]$ is a minimizing matrix on $\Omega(C_4)$, then a_{ij} is not zero for i, j = 2, 3 and 4 with $i \neq j$.

Proof. Assume that $a_{23} = 0$. Then a_{13} and a_{43} cannot be zero since A is fully indecomposable by Lemma 2. That is, the third column of A has only two nonzero entries. Thus the contraction C(A) of A on the third column has the form

$$C(A) = \begin{pmatrix} a_{11} + a_{41} & a_{12} + a_{42} & a_{14} \\ a_{21} & 0 & a_{24} \\ a_{31} & a_{32} & a_{34} \end{pmatrix}$$

Since C(A) is contained in $\Omega(J_3 - E_{22})$, $\operatorname{per}(C(A))$ is greater than or equals the minimum permanent on $\Omega(J_3 - E_{22})$. But the minimum permanent on $\Omega(J_3 - E_{22})$ is $\frac{1}{4}$ by Theorem 1 in [1] because the permanent is invariant under the exchange of rows or columns. That is,

(6)
$$\operatorname{per}(C(A)) \ge \frac{1}{4}.$$

Since X_4 in (1) has $\frac{27}{256}$ as its permanent from (3), we have

$$\operatorname{per}(A) \geq \frac{1}{2} \operatorname{per}(C(A)) \geq \frac{1}{8} > \frac{27}{256} = \ \operatorname{per}(X_4)$$

by (5) and (6). Therefore A with $a_{23} = 0$ is not a minimizing matrix on $\Omega(C_4)$. By the similar proof, we can show that a_{ij} is not zero for i, j = 2, 3 and 4 with $i \neq j$.

Proof of Theorem 4. Assume that $A = [a_{ij}]$ is a minimizing matrix on $\Omega(C_4)$. Then Lemmas 5 and 6 imply that a_{i1} and a_{1i} are not zero for i = 1, 2, 3 and 4. Lemma 7 implies that a_{ij} is not zero for i, j = 2, 3

and 4 with $i \neq j$. Hence the minimizing matrix on $\Omega(C_4)$ is in the interior of the face $\Omega(C_4)$. That is, C_4 is cohesive, as required.

As a concluding remark, we propose a problem which is related to the conjecture of R. A. Brualdi in [1].

Problem Does the assumption that $\frac{1}{n-1}R_n$ is a minimizing matrix on $\Omega(R_n)$ imply the cohesiveness of C_n for $n \geq 4$?

In this paper, we see that the answer for this problem is yes for n = 4. Here we have a partial result on this problem.

PROPOSITION 8. Let $A_n = [a_{ij}]$ be a minimizing matrix on $\Omega(C_n)$. If $\frac{1}{n-1}R_n$ is a minimizing matrix on $\Omega(R_n)$, then the entry a_{11} in A_n is not zero.

Proof. Assume that a_{11} in A_n is zero. Then A_n is contained in the face $\Omega(R_n)$. Since $\frac{1}{n-1}R_n$ is a minimizing matrix on $\Omega(R_n)$, $\frac{1}{n-1}R_n$ is a minimizing matrix on $\Omega(C_n)$. Hence we have $\operatorname{per}(\frac{1}{n-1}R_n) \leq \operatorname{per}(\frac{1}{n-1}R_n(1|1))$ by Lemma 2. But

$$per(A_n) = per(\frac{1}{n-1}R_n) = (\frac{1}{n-1})^n per(R_n)$$

and

$$\operatorname{per}(A_n(1 \mid 1)) = \operatorname{per}(\frac{1}{n-1}R_n(1 \mid 1)) = (\frac{1}{n-1})^{n-1}\operatorname{per}(R_{n-1}).$$

Thus we have that $per(R_n) \leq (n-1)per(R_{n-1})$. However, for $n \geq 4$, we have $per(R_n) = (n-1)[per(R_{n-1}) + per(R_{n-2})]$ (see [5] Page 44), which is greater than $(n-1)per(R_{n-1})$. Hence we have a contradiction. This implies that a_{11} in A_n is not zero.

References

- R. A. Brualdi, An interesting face of the polytope of doubly stochastic matrices, Linear and Multilinear Algebra 15 (1985), 5-18.
- G. P. Egorycev, The solution of the van der Waerden problem for permanents, Dokl. Akad. Nauk. SSSR 258 (1981), 1041-1044.
- T. H. Foregger, On the minimum value of the permanent of a nearly decomposable doubly stochastic matrix, Linear Algebra Appl. 32 (1980), 75-85.

A cohesive matrix in a conjecture on permanents

- 4. D. London and H. Minc, On the permanent of doubly stochastic matrices with zero diagonal, Linear and Multilinear Algebra 24 (1989), 289-300.
- 5. H. Minc, Permanents, Addison-Wesley, Reading (1978).
- H. Minc, On a conjecture of R.A. Brualdi, Linear Algebra Appl 94 (1987), 61-66.
- 7. S. Z. Song, Minimum permanents on certain faces of matrices containing an identity submatrix, Linear Algebra Appl 108 (1988), 263-280.
- 8. S. Z. Song, A conjecture on permanents, Linear Algebra Appl 222 (1995), 91-95.

SUNG-MIN HONG, YOUNG-BAE JUN, SEON-JEONG KIM
DEPATRMENT OF MATHEMATICS, GYEONGSANG NATIONAL UNIVERSITY, CHINJU
660-701, KOREA

SEOK-ZUN SONG

Department of Mathematics, Cheju National University, Cheju 690-756, Korea