• Title/Summary/Keyword: Coherence time

Search Result 296, Processing Time 0.041 seconds

Analysis of the Effect of Energy Prices on Investment Sentiment: Applying the Wavelet Analysis Method (에너지 가격이 투자 심리에 미치는 효과 분석: 웨이블릿 분석 방법 적용)

  • Choi, Ki-Hong;Kim, Dong-Yoon
    • Journal of Korea Port Economic Association
    • /
    • v.37 no.2
    • /
    • pp.119-131
    • /
    • 2021
  • Energy is an essential element in economic activity and people's lives, an important resource used by various industries, and the financialization of commodity markets has led to the growing importance of crude oil turning into the same asset as other assets. Accordingly, studies analyzing the correlation between energy prices and investor sentiment explain that investor sentiment affects oil prices through economic factors and speculation. In this study, we wanted to analyze whether the impact of the most representative changes in oil prices affects investor decision making, affecting investor sentiment, and applying wavelet consistency analysis to determine how energy prices relate to investor sentiment. Studies show that policies should be focused on policy and market changes because energy prices differ by time scale and investment sentiment should be more influential in the long term than in the short term.

Development of Wideband Frequency Modulated Laser for High Resolution FMCW LiDAR Sensor (고분해능 FMCW LiDAR 센서 구성을 위한 광대역 주파수변조 레이저 개발)

  • Jong-Pil La;Ji-Eun Choi
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1023-1030
    • /
    • 2023
  • FMCW LiDAR system with robust target detection capabilities even under adverse operating conditions such as snow, rain, and fog is addressed in this paper. Our focus is primarily on enhancing the performance of FMCW LiDAR by improving the characteristics of the frequency-modulated laser, which directly influence range resolution, coherence length, and maximum measurement range etc. of LiDAR. We describe the utilization of an unbalanced Mach-Zehnder laser interferometer to measure real-time changes of the lasing frequency and to correct frequency modulation errors through an optical phase-locked loop technique. To extend the coherence length of laser, we employ an extended-cavity laser diode as the laser source and implement a laser interferometer with an photonic integrated circuit for miniaturization of optical system. The developed FMCW LiDAR system exhibits a bandwidth of 10.045GHz and a remarkable distance resolution of 0.84mm.

Topic Modeling and Sentiment Analysis of Twitter Discussions on COVID-19 from Spatial and Temporal Perspectives

  • AlAgha, Iyad
    • Journal of Information Science Theory and Practice
    • /
    • v.9 no.1
    • /
    • pp.35-53
    • /
    • 2021
  • The study reported in this paper aimed to evaluate the topics and opinions of COVID-19 discussion found on Twitter. It performed topic modeling and sentiment analysis of tweets posted during the COVID-19 outbreak, and compared these results over space and time. In addition, by covering a more recent and a longer period of the pandemic timeline, several patterns not previously reported in the literature were revealed. Author-pooled Latent Dirichlet Allocation (LDA) was used to generate twenty topics that discuss different aspects related to the pandemic. Time-series analysis of the distribution of tweets over topics was performed to explore how the discussion on each topic changed over time, and the potential reasons behind the change. In addition, spatial analysis of topics was performed by comparing the percentage of tweets in each topic among top tweeting countries. Afterward, sentiment analysis of tweets was performed at both temporal and spatial levels. Our intention was to analyze how the sentiment differs between countries and in response to certain events. The performance of the topic model was assessed by being compared with other alternative topic modeling techniques. The topic coherence was measured for the different techniques while changing the number of topics. Results showed that the pooling by author before performing LDA significantly improved the produced topic models.

Monitoring Time-Series Subsidence Observation in Incheon Using X-Band COSMO-SkyMed Synthetic Aperture Radar

  • Sang-Hoon Hong
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.2
    • /
    • pp.141-150
    • /
    • 2024
  • Ground subsidence in urban areas is mainly caused by anthropogenic factors such as excessive groundwater extraction and underground infrastructure development in the subsurface composed of soft materials. Global Navigation Satellite System data with high temporal resolution have been widely used to measure surface displacements accurately. However, these point-based terrestrial measurements with the low spatial resolution are somewhat limited in observing two-dimensional continuous surface displacements over large areas. The synthetic aperture radar interferometry (InSAR) technique can construct relatively high spatial resolution surface displacement information with accuracy ranging from millimeters to centimeters. Although constellation operations of SAR satellites have improved the revisit cycle, the temporal resolution of space-based observations is still low compared to in-situ observations. In this study, we evaluate the extraction of a time-series of surface displacement in Incheon Metropolitan City, South Korea, using the small baseline subset technique implemented using the commercial software, Gamma. For this purpose, 24 COSMO-SkyMed X-band SAR observations were collected from July 12, 2011, to August 27, 2012. The time-series surface displacement results were improved by reducing random phase noise, correcting residual phase due to satellite orbit errors, and mitigating nonlinear atmospheric phase artifacts. The perpendicular baseline of the collected COSMO-SkyMed SAR images was set to approximately 2-300 m. The surface displacement related to the ground subsidence was detected approximately 1 cm annually around a few Incheon Subway Line 2 route stations. The sufficient coherence indicates that the satellite orbit has been precisely managed for the interferometric processing.

Quantum Interference Effects on Optical Amplification and the Index of Refraction in a Four-Level System

  • Zhang, Hui-Fang;Wu, Jin-Hui;Gao, Jin--Yue
    • Journal of the Optical Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.174-179
    • /
    • 2003
  • We construct a four-level system where a metastable state is included in an $Er^{3+}$ Doped Yttrium aluminum garnet (YAG) crystal. Because of the action of the coherent field, the traditional light amplification with inversion can be exhibited with remarkable variation. As a result, we propose a method to achieve the gain equalization by atomic coherence. At the same time, we find that the high index of refraction accompanied by vanishing absorption can also be reached in this model. We also find that a higher index of refraction with zero absorption can be easily obtained when the coherent field is off resonance.

A New Approach to Web Data Mining Based on Cloud Computing

  • Zhu, Wenzheng;Lee, Changhoon
    • Journal of Computing Science and Engineering
    • /
    • v.8 no.4
    • /
    • pp.181-186
    • /
    • 2014
  • Web data mining aims at discovering useful knowledge from various Web resources. There is a growing trend among companies, organizations, and individuals alike of gathering information through Web data mining to utilize that information in their best interest. In science, cloud computing is a synonym for distributed computing over a network; cloud computing relies on the sharing of resources to achieve coherence and economies of scale, similar to a utility over a network, and means the ability to run a program or application on many connected computers at the same time. In this paper, we propose a new system framework based on the Hadoop platform to realize the collection of useful information of Web resources. The system framework is based on the Map/Reduce programming model of cloud computing. We propose a new data mining algorithm to be used in this system framework. Finally, we prove the feasibility of this approach by simulation experiment.

Collective Electronic Oscillator Method: Application to Conjugated Organic Molecules

  • Lee, Jin-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.6
    • /
    • pp.780-784
    • /
    • 2003
  • The collective electronic oscillator (CEO) method was developed by Mukamel and collaborators.[Phys. Rev. Lett. 1992, 69, 65; Science 1997, 277, 781] Recently Ⅰ have extended the CEO method to obtain the frequency dependent optical properties with all the contributing components. The brief introduction of the CEO fomalism and its recent applications to linear absorption and two-photon absorption (TPA) of conjugated organic molecules will be discussed. The size scaling of optical properties of polyenes and polyynes have studied by ab initio calculations, and this result is consistent with the coherence length of the time dependent densities to first ($ρ^(1)$) and second order ($ρ^(2)$) in the electric field obtained from the CEO method.

Two Dimensional Electronic Spectroscopy

  • Fleming, Graham R.;Yang, Min-O;Agarwal, Ritesh;Prall, Bradley S.;Kaufman, Laura J.;Neuwahl, Fred
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.8
    • /
    • pp.1081-1090
    • /
    • 2003
  • Two different electronically resonant two-dimensional spectroscopies are described. The first, two-color photon echo peak shift spectroscopy, is sensitive to correlations in transition frequency between the initial and probed (final) states. It provides new insight into the mechanism of ultrafast solvation and should prove useful for characterizing dynamics in inhomogeneous systems in general. The second technique, fifth order threepulse scattering, contains two coherence periods whose durations are controlled. The entire two-dimensional surface was recorded for a dye molecule in dilute solution and a photosynthetic light-harvesting complex. The data provide insight into the short-time dynamics of solvation and exciton relaxation, respectively.

Fabrication and Output Characteristics of a High-Speed Wavelength Swept Mode-Locked Laser (고속 파장가변 모드잠김 레이저의 제작 및 출력특성)

  • Lee, Eung-Je;Kim, Yong-Pyung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.6
    • /
    • pp.1117-1121
    • /
    • 2007
  • We demonstrate a wavelength swept mode-locked ring laser for the frequency domain optical coherence tomography(FD OCT). A laser is constructed by using a semiconductor optical amplifier, fiber Fabry-Perot tunable filter and 2.6 km fiber ring cavity. Mode-locking is implemented by 2.6 km fiber ring cavity for matching the fundamental or harmonic of cavity roundtrip time to a sweep period. The wavelength sweeps are repetitively generated with the repetition period of 77.2 kHz which is the parallel resonance frequency of Fabry-Perot tunable filter for the low driving current consumption of the fiber Fabry-Perot tunable filter. The wavelength tuning range of the laser is more than FWHM of 61 nm centered at the wavelength of 1320 nm and the linewidth of the source is $0.014{\pm}0.002$ nm.

외부공진 반도체 레이저 기반의 초고속 파장훑음 광원

  • Kim, Chang-Seok;Lee, Hwi-Don
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.123-123
    • /
    • 2013
  • OCT (Optical Coherence Tomography)는 의료용 생체조직의 단층 영상을 레이저 빛을 이용하여 구현하는 첨단 의료기술이다. Time-domain과 Fourier-domain을 기반으로 다양한 광간섭 신호의 획득이 연구되고 있으며, 영상획득 속도의 향상을 위한 경쟁이 세계적으로 치열한 상황이다. 최근 초고속 파장훑음 광원(Wavelength-swept source)의 개발을 통하여 초당 300 frame 이상의 단층 영상이 구현되고 있다. 본 발표에서는 초고속 파장훑음 레이저 광원(Wavelength swept laser)이 능동형 모드잠금(Active mode locking) 외부공진 반도체 공진 구조를 기반으로 새롭게 구현된 연구 성과를 포함한다. 분산에 의한 모드 잠금에 의하여 발진 파장이 결정되어 가변하므로 1 MHz 급 이상의 초고속 반복이 가능하며, 특히 의료용 산업용 분야의 다양한 광센서 및 광영상 응용에 활발히 응용되고 있다.

  • PDF